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1_ INTRODUCTION

This is the final report of a project devoted to the theoretical

study of molecular state-to-state collision phenomena. The present

document describes the work accomplished during the fifth year of the

program (1 May 1979 to 30 April 1980). Interim scientific reports

dated June 22, 1979, July 1, 1978, June 24, 1977, and June 28, 1976

have covered the work of preceding years.

The purpose of the project has been to develop the theoretical

tools necessary to treat a variety of collision processes, and to per-

form calculations of transition probabilities for selected systems.

The problems considered have involved the interactions of three particles

under the influence of potentials for two or more electronic states.

For this type of process, currently available experimental techniques

allow the determination of specific states of species before and after

interaction. Our general method of approach has been to pursue two

types of calculations: model calculations designed to isolate and

probe particular reaction mechanisms, and detailed calculations on

specific systems that have been studied experimentally in our labora-

tory or elsewhere. This dual approach has enabled us better to under-

stand a wide range of scattering phenomena, and has provided a

quantitative test of the accuracy of the methods we have developed.

During the past year we have worked on the following types of

problems: theoretical studies of collisional angular momentum mixing

of highly excited, Rydberg atoms; calculations of potential surfaces,

matrix elements, and photodissociation cross sections for small

molecules; and the development of new methods to treat the nonadiabatic

2
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process of ion-pair formation in collisions of alkali atoms or rare

gas metastables with diatomic molecules. Our accomplishments in these

areas are summarized in the following section.
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II RESEARCH ACCOMPLISHMENTS

Theoretical Studies of Rydberz Atoms

Studies investigating the properties of highly excited Rydberg

atoms have been under way at SRI for several years. The experiments

of Gallagher, Edelstein, and Hill 1 first identified the "angular

momentum mixing" process:

Na*(nd) + X - Na*(nil) + X (I" - 3) (1)

in 1975. The cross sections for this process are very large and show

a maximum when plotted as a function of principal quantum number n.
2-5

Over a period of years, studies supported by this contract have con-

tributed to increased understanding of Rydberg collision processes.

The work completed in the past year has furthered this understanding

by consolidating the results of several previous calculations in terms

of general scaling formulas. These formulas lead to an appealing

physical interpretation of the process of angular momentum mixing, and

can be quickly and easily applied to a variety of systems.

During the past year, in work supported by another Air Force

contract, the research group of T. F. Gallagher has studied collisions

of Na Rydberg atoms with molecules such as CH4 and C H (methane and
6 4 3 8

propane). The research sought to determine the role of the internal

structure of the collision partner. The experimental data obtained

4! was qualitatively very similar to data obtained for much simpler

collision partners, such as the rare gases He, Ne, and Ar, 1 and also

for N2. These results suggested that the larger and more complicated

collision partners could be treated by the same theoretical model
4 ,5

that was successfully used to analyze collisions with structureless

particles. The only information required for this model is data for low

energy electron scattering from CH4 and C3H8, which is available.
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Because of the apparent wide range of validity of the theoretical

model we have used, and because of the small number of parameters on

which the results depend, we sought to express the results in terms of

physical scaling laws. We have found that the results of many coupled-

channel and Born calculations can be expressed in terms of nunerically

determined functions of reduced parameters. The general result is

4 2
A-mix(n) - n a0 g() f(Y) (2)

where a (n) is the experimentally measured cross section for process

(1), summed over all final states A'; $ is a quantity that measures the

strength of the interaction of the collision partner with the diffuse
electron cloud; and y is a quantity related to the energy gap between

the nd and higher nA states of Na. Equation (2) thus leads to an

interpretation of the scattering process in terms of reduced parameters

that have a clear physical meaning. The formula has been applied to

collisions of Na(nd) with He, Ne, Ar, N2 , CH , C3H8 ; to Rb(nf) + He, Ar,

Xe; and to Xe(nf) + CO .  The results are generally accurate to about
a factor of two. This degree of accuracy is very useful because the

cross sections vary by an order of magnitude or more in the range of n

considered. This work has been submitted to Physical Review A, and a
, preprint is included as Appendix A. This preprint contains a more

complete discussion of the scaling formula, as well as graphs of the

4! functions f(y) and g($) of Eq. (2).

I i The most important theoretical result of our work on Rydberg atoms

has been to achieve a better understanding of the role of the inter-

action of the excited electron with the collision partner. It had

generally been argued that the interaction of a Rydberg atoms with a

collision partner should be determined by the way the excited electron,

in its large orbit, scattered from the collision partner. The quantita-

tive calculations we have done lend support to this physical picture,

and explain the mechanism in much greater detail.
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+
Theoretical Calculations of Small Molecules: CH

The formation and destruction of CH+ in diffuse interstellar clouds

is an interesting problem in interstellar chemistry. Better knowledge

of the excited state potential curves as well as of photodissociation

cross sections is necessary to understand this astrophysical problem.

The CH+ system is small enough so that calculations that include Rydberg

states on the same footing as valence states could be undertaken. In

collaboration with Dr. Bowen Liu, IB4 Research Laboratory, San Jose, CA,

and Dr. Kate Kirby, Harvard-Smithsonian Center for Astrophysics, Cambridge,

MA, we performed ab initio calculations of the valence and low-lying
Rydberg states of 1! and 1 symmetry of CH+ . The specific objective of

this work was to explore the repulsive excited states of CH+ as well as

to look for bound excited states that are dipole-connected to the ground

Xle state to investigate whether CH+ is a source for unidentified

interstellar molecular absorption lines. Only the first root of each

symmetry is bound, although the 21r+ state is found to be quasi-bound

in this calculation. Transition moments and photodissociation cross

sections from the Xlz+ state to a number of excited 'E+ and 7 states

were calculated; it was found that the 31E+ and 21Tf states have signifi-

cant cross sections at wavelengths longer than Lyman-ot. From these

cross sections and astrophysical information, photodissociation rates

in interstellar clouds and comets can be obtained.

Photodissociation cross sections and their astrophysical implica-

tions are discussed in a paper accepted by the Astrophysical Journal.
7

The ak ijtg calculations, in which care was taken to test the validity

of the calculational procedure, are described in a paper that has been

accepted by the Journal of Chemical Physics. A preprint of the latter

paper is attached as Appendix B.
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We have also recently completed a calculation of the 3 - state of

CU+ which correlates asymptotically to C( 3P) + H + . This system is being

studied experimentally in the Molecular Physics Laboratory by the

technique of fast beam photofragment spectroscopy. Knowledge of the
3 E potential curve may aid in interpreting the experimental data. This

particular state of CH+ poses an interesting theoretical challenge as
+

well. While there is no electron on the H , asymptotically there is H

character in the molecular orbitals in the bonding region. Thus, de-

signing a calculation to determine properly the molecular orbitals

requires some care. We have carried out a series of calculations

including different amounts of electronic correlation and have compared

the results in terms of the spectroscopic parameters describing the

minimum and maximum of the potential curve. The excellent agreement

between the different calculations confirms that we have realistically .

described the CH+ 3EZ potential curve.

Theory of Nonadiabatic Collisions

During the past year we made substantial progress in the study of

atom-molecule collisions that involve two or more electronic potential

energy surfaces. Although the approaches we developed are applicable

to many different systems, we generally focused on systems that were

actively being investigated in the experimental program at SRI.

~We have used three types of theoretical approaches. The first is
a quasi-classical trajectory model that invokes the Landau-Zener

formula to calculate a "surface-hopping" probability at each surface

intersection. Such a model has yielded reasonable results for many
8-il

systems, but its quantitative accuracy may be limited in certain

situations, such as the reaction of He (2 13S) with 02 now being studied

at SRI -- a reaction that involves three surfaces. Therefore, we have

7
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also pursued two different quantum mechanical approaches. One of these

is based on applying time-dependent perturbation theory in the impact

parameter formulation. We assume the projectile follows a straight

line, constant velocity classical trajectory of a given impact parameter.

The potential seen by the target diatomic molecule is then explicitly

time-dependent. The other quantum mechanical approach, which is time-

independent, is a generalization of the quantum mechanical Infinite-

Order-Sudden (lOS) approximation. 12,13 This method has been extensively
12,14

applied to rotational excitation. In this approximation, the

solution of the coupled equations is greatly simplified, when one

assumes the rotational levels for a given vibrational state are

degenerate, and solves coupled channel equations for only the number of

vibrational states of interest. We have found that similar expressions

can be derived when several electronic states are coupled. They can be

made extremely simple if one assumes that both the rotational and

vibrational levels are degenerate. Although this approximation must be

tested further, it looks promising at the experimental energies of

interest. The following subsections discuss our results with each of

these three approaches.

(a) Quasi-Classical Surface Hoppina Model

The work done in this area was an outgrowth of a collaboration

with Dr. Aart Kleyn of the FOM institute in Amsterdam. Kleyn visited

SRI for two months in 1979 and implemented some of the computer codes

used in Amsterdam. We have done additional work to modify and generalize

these codes.

Using the surface-hopping model, we performed a comparative

study of ion-pair formation on two similar systems:

Ar* + 12 .Ar+ + 12 "  (3)

8
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and

K+ 12 2K + 12 (4)

One would expect these two reactions to be rather similar, since in

each case the single active electron is in a 4s orbital. However, an

additional final channel is available in the first reaction. Penning

ionization may occur,
*+ -

Ar +1 2 " Ar + 12 + e

Data are available for both reactions. The FOM group in Amsterdam con-

sidered K 4 12 and Dr. K. T. Gillen at SRI has investigated Ar + 12.
In a collaborative effort with Dr. Gillen, we were able to perform

calculations that explained some of the differences in the differential

cross sections for these two systems. We explored how differences in

the matrix elements arising from the inner shell vacancy and the com-

peting ionization channel would affect the cross sections. This work

has been submitted to the Journal of Chemical Physics, and a preprint

is included as Appendix C.

(b) Quantum Mechanical Perturbation Theory of Nonadiabatic Collisions

Considerable theoretical effort15 has been directed to the

quantum mechanical formulation of the nonadiabatic (i.e., multiple-

potential-surface) collision problem. The most general theory, and the

least tractable, is a full coupled-channel expansion in rotational,

vibrational, and electronic eigenstates. We sought an alternative

formulation that preserved the essential features of the multiple-

surface crossings, but exploited approximations that can legitimately

be made at the high collision energies of interest (E - 50-100 eV).
16

The approach chosen was the impact parameter approximation, in which

a rectilinear classical trajectory is assumed for the translational

motion, leading to a time-dependent Schroedinger's equation for the

i9



remaining degrees of freedom. We discovered that m'del potentials of

the same type used in previous studies of collisions of alkali atoms

and diatomic molecules led to a particularly simple form of the final

equations. These equations were solved using the Magnus approximation.
17

We will briefly summarize the results of our calculations.

We performed calculations using model potentials chosen to model the

reaction

Cs +0 - C + 0 (6)
2 2 2(6

Initially, isotropic potentials were assumed; that is, molecular rota-

tion was neglected. The results exhibited strong oscillations, corre-
18

sponding qualitatively to those observed in recent measurements.

These oscillations have been related to the vibrational motion of the

molecular 02 or 02 during the time of the collision. We also treated

anisotropic potentials using the Infinite-Order-Sudden approximation.

We obtained rotationally averaged cross sections between specific

vibrational states. The oscillations observed in the isotropic case

persisted, although they were less prominent.

These rotationally averaged calculations also enabled us to examine
the effect of different initial vibrational levels v. on the ion pair

formation. The model predicted that the oscillations will become less

pronounced as v. is increased. Although no measurements are available
3.

to test this result, our calculations suggest a direction for future

experiments.

The theory and calculations are described in greater detail in a

paper that has been submitted to the Journal of Chemical Physics. A

preprint is incluaed as Appendix D.

10
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(c) Time-Independent Quantum Mechanical Theory of Nonadiabatic

Collisions

The time-independent theory of nonadiabatic collisions that

we are developing is a generalization of the usual IOS approximation

and is complementary to the impact parameter approach described above.

The impact parameter treatment assumes a straight line trajectory, but

explicitly considers the internal state structure, whereas methods based

on the sudden approximation properly treat the dynamics, but assume

internal energies are degenerate.

The sudden approximation is conceptually appealing for our

application to systems like He + 02, since in the experiments rotational

states of the target are not resolved and in the sudden approximation

they do not have to be considered individually. Although the IOS
12,13

formalism has been given for the case where vibrational channels

are considered explicitly, most calculations have been done in the rigid

rotor approximation (i.e., ignoring vibration).

In the present work, we develop the time-independent close

coupled equations for the case of two electronic states in the sudden

approximation for all internal degrees of freedom, that is, vibrational

and rotational. We start with a Hamiltonian expressed in terms of the

matrix elements between the electronic eigenstates. We then seek a

solution to the time-independent Schroedinger equation. The solution

is written as the column vector (Rr], where the wavefunctions on the

covalent and ionic surfaces, respectively, are given by expansions in

terms of the internal states of 0 and 02
2 2

o1(RIr) i (R ) Pi(r) (7)

*l(R r) - Gi(R)Xj(r) (8)

11



In this case c. (r) and )( (r) refer to all internal degrees

of freedom; that is, r refers to all internal coordinates. In the

sudden approximation, we solve the simplified set of two coupled

equations: [) + -2 " V00 (Rr) V01(RIr L0(Rr)
d~ 2 -Ik I-I - (9)

[dlZ R V L 1r V11(RIrJ (R~r)I 0 1( 11R)r])

Here A is an appropriately chosen value of the orbital angular momentum
-2 2W.

and k = E-7), where - is an average internal energy for the two

electronic states, for the functions f(R,r) and g(R,r). Replacing L

by I and the internal energies by an average value are the heart of the

sudden approximation. In Eq. (9), the internal coordinates denoted by

r are considered as fixed parameters. The desired solutions of the

original problem are then given as:

F in(R) - < cpi (r) f(R,r)lyn(r) > (10)

Gi (R) - < )j (r) I g(R,r) lcpn(r) > (11)

Roughly speaking, Eqs. (10) and (11) average the solutions f(R,r) and

g(R,r) for fixed values of r over the internal wavefunctions in r. In

the present formulation, the number of coupled equations is just the

number of electronic surfaces in the problem.

The S matrix elements are written on terms of four N x N blocks
00 01 10 11

whose elements are S., S S., and S , where the superscripts

denote the initial and final electronic surface, and the subscripts

denote the initial and final target state. In terms of the 2 x 2 S

matrix calculated by solving Eq. (9), whose elements are S0 0 , S01 ,

Sll , we have

12
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((r S 00 (rSoo (12)

01

S 01 p (r) Sol )(j (r)) (13)

s 10 r) S10 j (r)) (14)Iij

s(r) i S11 j (r)) (15)

In this work we are interested in the total cross section for

scattering from a particular vibrational state i on one electronic sur-

face to vibrational state j on the other electronic potential surface,

where the cross section has been summed over all final rotational states.

We now note that the internal coordinate stands for the vibrational

coordinate as well as the body fixed angle, y, between the diatomic

axis and the vector from the diatomic center of mass to the third

body. Then the desired cross section is

al (  i) Q J l~ -i;y) d cos y .(L6)

where
IO 12

o10  i;y) -k 2 E (2 + 1) Ii (S ,) (17)

A £10
Here we have explicitly written the dependence of Slj on the angular

momentm 1 and angle y.

For our first application of this formalism, we used the following

model potential functions:

V00 (R) - C1 exp (-C2R) (18)

V 1 (R) -V00 (R) - l/R + &E (19)

V01 (R) - C3 exp ,-C4R) sin 2y (20)

.13
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I.

where LE is the as}nptotic separation between the electronic states.

The parameters C1 = 319.8680 a.u., C . 1.9319 a.u., C = 0.35 a.u.,
2 3

C4 = 0.5 a.u., and AE = 0.12578 a.u., were chosen to model the reaction
+

CS + 02 - CS + 02 (21)

The calculations now completed have assumed that sin 2y is fiked at 1.0.

The cross sections were summed explicitly over final vibrational states.

Calculations were performed for a system with the reduced mass of

Li + 0 to reduce the amount of computation required. The internal
2

energy C0 was taken as the vibrational energy of state i of 02, and

the internal energy of C was taken as the internal energy of state j of

0
* 2

Results are shown in Fig. 1 for initial vibrational states 0 and 1.

The energy scale on the top of the figure also shows the total energy

for the Cs + 02 system with the same relative velocity as that of the

2Li + 0 2 mass. Calculations must be performed at higher total energies

before the results can be evaluated. The increase of the cross section

with initial vibrational state is also apparent in the figure. Future

work also includes study of the effect of the choice of e on the results

and the evaluation of the charge exchange cross section for anisotropic

potentials.

.1
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Figure 1. Preliminary results of calculations based on

the Infinite-Order-Sudden approximation.
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APPENDIX A

APPROXLATE SCALING FORMULA FOR COLL1SIONAL ANGULAR
HOMENTUM MIXING OF RYDBERG ATOMS

A. P. Hickman
Molecular Physics Laboratory

SRZ International, Menlo Park, CA 94025

ABSTRACT

An approximate scaling formula has been determined that permits

the rapid estimation of cross sections for angular momentm changing

collisions of Rydberg atoms with a variety of targets, using informa-

tion about low energy electron scattering from the target. The

formula is obtained by fitting the results of coupled-channel and

Born approximation calculations to functions of reduced parameters.

Application to Na(nd) + He, Na, Ar, N2 , C 4, C3 8; Rb(nf) + He, Ar,

Xe; and Xe(nf) + C0, suggests that the accuracy is about a factor

of two.
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I ITRODUCTION

Considerable attention has been devoted recently to collisions

Involving Rydbera atoms, especially the "i-mixing" or angular momentum

1-11
changing process

R (nA) +X-R (nA') + X 1- (1)

i where I is the Rydberg atom and X is the collision partner. It has

generally been argued that one should be able to analyze this process

in terms of the cross section for low energy electron scattering from

X. In this paper we present a very simple scaling formula that can be

used to estimate the cross section for reaction (1) to about a factor

of two, starting from information about e-X scattering. This degree

of accuracy is useful because the cross sections may vary by as much

as an order of magnitude over the range of n considered.

The scaling formula was determined by fitting the results of

coupled-channel and Born approximation calculations to functions of

reduced parameters. These parmeters have a reasonable physical

4! interpretation in terms of the "nearly free electron" picture. The

determination of the formula and its physical interpretation are dis-

cussed in Section 11. Section III contains the results of calculations

for several systems, Including molecular targets. The accuracy of the

results for more complicated targets suggests that their internal

structure may play only a minor role in the collisions studied.
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I THE SCALLNG FORIMULA

A. Determination

Our previous calculations 6,8 of angular momentum mixing may be

characterized as exact or approximate solutions of a specific, well-

defined model problem. We will begin by summarizing this problem, and

then show how one might expect to estimate the desired cross sections

using empirical functions of reduced parameters. Then one additional

approximation is introduced to tie the model problem to the physical

system involving the Rydberg atom and an arbitrary collision partner.

The model problem may be posed as follows. Consider the system

Na + X indicated in Figure 1. The Rydberg atom Na has principle

quantum number n, and we consider only the initial level £-Z and other

levels A-3,4,...,n-L° Assume

Et - End &E, L-3,4,...,n-l (2)

This is approximately true for sodium since the d quantum defect d is

much larger than 8 for A > 2. The interaction potential is given by a

Fermi pseudopotential

For the present discussion, A is to be considered an arbitrary constant.

We wish to calculate a-mix, defined by

n-I

z A 7 (nd- nA), (4)
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1.3
using the quantum mechanical Arthurs and Dalgarno formalism or the

• 6,8
Born approximation as discussed previously. We expect that a --mix

will depend on a, A, 4E, and v, the relative velocity of Na+ and X.

That is,

a-mix 4 * -mix (n,A, 4E,v) (5)

We wish to find a functional form for a£-.x" Previously, we

showed 8 that if 1E a 0, the results of the Born approximation may be

well-fitted by

CZ, i =  v-> 2.733

(*O n ,AE-o) (6)

We can write this in a slightly different form by separating out a

4 2
factor = 4 a2 (the so-called geometrical cross section of the Rydberg

atom), and making A/v dimensionless by dividing by the unit length and

velocity in atomic units:

Mx n 50 (&E=0) (7)

where

22 ,_ _2

M2 a4 2 6.733 (8)
a 0 v a

The constant m is the electron mass in atomic units. If 4E 0 0 our pro-

vious results8 suggested that in the weak coupling limit a more general

formula could be written

a A-mix a t 0  f() (9)

A-4
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where 2
aOAE

f(Y) is an approximation to the family of functions shown in Figure 2

of reference 8 that depend weakly on the parameter n. In neglecting

the dependence on n we simplify the functional form but introduce some

ambiguity into the determination of f. Eq. (9) is expected to be a

reasonable approximation in the weak-coupling (small A or large n)

limit. We now postulate that a more general formula can be obtained

by writing

42
-mix " n a0 g()f(y) (11)

where

a($) - %a as -.o (12)

We will find later the constant y has the value 0.715. We performed a

number of calculations using the coupled channel method and Born

approximation to test the usefulness of Eq. (11). For the situations

previously considered, the Born approximation could be applied only

when n was large, and the coupled channel method was feasible only when

I, n -and the number of channels -was small. However, by varying A and v,

we have been able to probe a wider region of --y space and still keep

the number of channels small. The results of these calculations are

listed in Table 1.
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I: was possible co find, empirically, functions f(v) and $(3) such

-hat the results of the coupled channel and Born approximation calcula-

tions were approximated by Eq. (11) to about a factor of two. These

functions are shown in Figures 2 and 3 and tabulated in Tables 2 and 3.

At this point we have obtained an approximate scaling rule that

can be used to estimate the results of a model problem involving a

Fermi pseudopotential with arbitrary constant A. We now make an addi-

tional approximation to relate A to the low-energy electron scattering

by X. Let

4 T A- - 'el (l/Zn') (13)

ael is the e-X scattering cross section at the electron energy I/Zn2 ,

which is the average kinetic energy of the electron in the quantm level

n. As n - w, A - L, the scattering length. Some justification is given

for Eq. (13) in reference 8. In this work we find, a posteriori, that

it is reasonably successful.

With the substitution defined by Eq. (13), the final form of the

scaling rule is given by Eqs. (10), (11), and

m az 3.337 4T()e0 vr L
Although the scaling rule is empirical, it can be related to a

natural physical interpretation of the scattering process. This

interpretation will be discussed in the next section. Finally, note
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that although the preceeding discussion has assumed that the Rydberg

atom was sodium, we find that the formula may be applied to other atoms

as well. The essential feature of the model is that the Initial level

is separated by AE from a nearly degenerate set of possible final levels.

For large n, the difference in the number of final states for an initial

1 -2 or 3 is small. Hence we will test the formula for collisions in-

volving Na (nd), Rb (nf), and Xe (nf).

* B. Physical Interpretation and Discussion

The approximate scaling formula is a product of three factors.

The geometrical factor -rn a0 shows that the cross section scales with

the overall size of the atom. We interpret the parameter 3 as a

coupling strength, and &(a) as the probability that the collision

partner will encounter the orbiting Rydberg electron. $ increases

with ael' which gives an effective size of the collision partner, and

decreases with n, because for larger n the electron "cloud" is more

diffuse. We interpret the function f(y) as the probability that an

elastic collision between the orbiting electron and the collision

partner will cause a transition into a new energy level. It is inter-

esting to note that the parameter y may be rewritten

vey - (6 ) e (15)

where ,6 is the difference in the quantum defects of initial and final

states, and v e I/n (atomic units), the velocity corresponding to thee

A-7
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average £Inetic enargy of an electron with principle quantum number n.

This formula is obtained by expanding

1 1
A -M2(n+6,,)2 2(n+6.Z (16)

in the 'Umi t 6, << a and substituting into Eq. (10). When -v is large,

f(y) -0 and hence the 10-micing will be small. Eq. (15) shows that

this can occur because the inelasticity is large, or because v isa

large compared to v, and hence it is less likely that a collision will

deflect the electron enough to change the shape of its orbit. Con-

versely, the 2-mixing will be larger when Y is small. This may occur

either because the energy difference between initial and final states

is small, or because the electron is moving slowly relative to the

collision partner and a collision tends seriously to perturb its

orbit.

It is instructive to consider various limiting values of the

scaling functions g and f. We have already noted that the function g

is parabolic as the argument approaches zero. For large values of

the argument, g tends to saturate at a value of 0.5 to 0.6. This
4 2

number Ls somewhat arbitrary since the prefactor rrn a0 could equally

42 42
well have been 2,mr a0 or 4n aO . Appropriate limiting values of f(y)

are more easily defined. As aE - 0 (or v - a), y - 0, f(y) - 1. We

can thus draw the following conclusions about the general behavior of

A-8
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2-mixing cross sections. For large n, f - i, and the angular momentum

levels nd and al' (.' . 2) are effectively degenerate. The decrease

of a (n) with increasing n is due to the reduced coupling strength
A-mix

of the diffuse electron cloud. On the other hand, the (inelastic)

cross section tends to be small for small n because of the smaller

geometrical cross section and the increased importance of the energy

level splitting jE.

We now consider how the velocity dependence of the A-mixing cross

section is controlled by the functions f and S. At large n, y will

generally be sufficiently small so that f f I for typical (thermal)

value of v. (Note that AE = n 3). Then the behavior of g($) shows

that a-mxL decreases for larger values of v. In the limit v -

aZ-mix I ! /v 2 but for smaller values of v the dependence may go as I/v

or weaker. The I/v dependence corresponds to the intuitive notion

that a slower projectile spends more time passing through the Rydberg

atom, and consequently has a higher probability of encountering the

electron. The opposite may be true for small n when the coupling is

stronger. In this case, S(0) may achieve is saturated value of

0.5-0.6 for a range of thermal velocities, so that the velocity

Sdependence of a -mix will be determined by f(-y). E%=nLnation of

Figure ( ) shows that a-mix will then increase with larger values of

v, because increasing v has the same effect as decreasing AE. Similar

behavior has been analyzed theoretically in other inelastic collisions

14
by Olson.
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III RESULTS AND DISCUSSION

A. General Comments

The approximate scaling formula determined in the previous section

has been used to estimate angular momentum changing cross sections for

collisions of Na(nd) with He, Ne, Ar, N2, CH,, and C3H8 , for collisions

of Rb(nf) + He, Ar, and Xe, and for collisions of Xe(nf) + CO . The
2

collision velocities used were the mean thermal velocities at the

temperatures of the experiments with which the results are compared.

This velocity is given by

(Lkar(17)

where k is Boltzann's constant and u is the reduced mass of the

collision system. For collisions involving Na, we used T - 430 K;

for Rb, T - 520 K, and for Xe, T - 300 K.

The electron scattering cross sections were determined as follows.

For the rare gases Ne, Ar, and Xe, we used the formulas for the s, p,

and higher phase shifts given by O'Malley and computed the total

elastic scattering cross section in the standard way. For He, we used

at every n the value A a 1.19a 0 (the scattering length) as the constant

term in the Fermi potential (Eq. (3)]. For NZ, following Gallagher ac al.,
3

we used A 0 0.7a0 at every n. For low energy electron scattering (E 4 0.5 eV)

A-10
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!rom Hie and 'I there is not a strong energy dependence of the cross

section. For a-CO2 and e-CH4 , we used the scattering data compiled by

16
Itikawa. These data are the total momentum transfer cross section,

which may include inelastic processes, rather than the elastic cross

sections required by the theory. For the CH4 data, Itikawa estimates

an uncertainty in the data of about a factor of two. At this level of

accuracy, and at the very low electron energies involved, the substiu-

tion of the momentum transfer cross section for the elastic cross

section is probably not too serious an approximation. This view is

supported by Itikawa. The CO data is more accurate, but the un-

certainty in the scaling formula probably renders the distinction

between momentum transfer cross section and elastic cross section

irrelevant. Finally, the e - C3H 8 scattering data of McCorkle at al.
17

was used. In this case also, the momentum transfer cross sections were

measured.

The energy differences aE of Na were taken to be the d-f splittings

18
measured by Gallagher et al. The parameter y in the Rb and Xe colli-

*sions were determined from Eq. (15), assuning

A6 S (18)

where f 0.02 for Rb and 0.055 for Xe.
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3. Cross Sections

Results for collisions of Na and Rb Rydberg atoms with rare gases

are presented in Figures 4-9. The agreement for the case that the

collision partner is He is especially good. Note that the present

results for Na(nd) + He are determined using the scaling formula;

they differ only slightly from the coupled channel and Born approxi-

mation results presented previously. The good agreement for He

suggests that the Fermi pseudopotential is a rather good approximation

when the low energy electron scattering has a weak dependence on

energy. Also, the small polarizability of He supports the use of a

short range (deita function) approximation to the a-He potential.

For the collisions involving Ar and Ne the energy dependence of the

electron scattering cross section does influence the predicted result

for n , 10-20. The calculated cross sections are in reasonable agree-

ment with the data in this range, suggesting that the approximate

method of including the energy dependence (Eq. (13)] Is at leas

qualitatively correct.

We have also applied the scaliL formula to collisions involving

more complicated partners. In these calculations the -nternal structure

of the target is neglected, although It may of course influence the

electron scattering cross sections used. The qualitative agreement

observed between the calculations and experiment tends to suggest

k- 12



that the elastic scattering of the electron by the target is the

dominant mechanism of L-mixing in these collisions as well as in those

involving rare gases. Note that the formula is not intended to be

used for a collision partner that has a charge or large dipole moment.

Figures 10 thru 13 show the calculated results for a number of

molecular targets. The agreement with experiment is generally

reasonable. The excellent results for Na(nd) + N 2 tend to confirm,

as in the case of Te, the reliability of the Fermi pseudopotential

when the low energy electron scattering does not have a strong energy

dependence.

It is interesting to consider the structure observed in dhe experi-

mental date near n - 15 for Na(nd) + C3 H8 . We have considered what

form of the elastic cross section ae1 would be necessary to lead to

the observed form of a Z-ix(n), assuming the validity of Eq. (11).

We found that the unusual structure in a Imtx(n) for n - 13-16 could

be fit by assuming an electron-propane elastic scattering cross section

that exhibits a strong change of slope, but not a dip, at an electron

energy 0.060 eV, which is the average electron kinetic energy for

n a 15. This effective elastic cross section is about a factor of

17two less than a of McCorkle et al. for E > 0.060 eV, but rises
m

more sharply for E < 0.060 eV. In this region (n - 15-17) the size

of the coupling strength parameter $ is sensitive to two competing

A-13
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factors. As n increases, A Increases because of the rapid increase

in 7el as the electron energy goes to zero. However, this is nearly

-3.37
counteracted by the factor n that reflects the weaker effect of

the increasingly more diffuse electron cloud. The net effect is that

the coupling strength teecers between these competing influences.

The results of this analysis are only qualitative, of course, but they

indicate that the unusual structure in the Rydberg cross section can be

related to a plausible behavior of the corresponding electron scattering

cross section.

4
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IV CONCUDING REARKS

An approximate scaling formula for collisional angular momentum

mixing of low-i Rydberg atoms has been determined that gives reason-

able results for a wide variety of systems. Although the formula was

determined using calculations that assumed the collision partner was

a rare gas, qualitative agreement is also obtained for targets with

internal structure. All the cross sections exhibit a maximum as a

function of n, but the shape and position of the peak may vary con-

.siderably. For example, Rb + He has a sharp peak at n - 11, while

Xe + COz has a very broad maximum for m28. The formulas obtained

here show how such contrasting behavior may be qualitatively related

to the energy level splittings of the Rydberg atom, the energy

dependence of the electron scattering from the collision partner,

and the relative velocity of the collision.
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TABLE 1

Values of a -Mix as a function of n, v, and L obtained by coupled-

channel calculations.

S va.u) LVa.u.) / 4a 2

4 6.867xl0 1.19 4.75 16.21 0.192
5 6.867x10 4  1.19 3.82 7.64 0.387
6 6.867x10 4 1.19 3.20 4.14 0.440
7 6.867xlo 1.19 2.75 2.46 0.402
8 6.867x10 1.19 2.41 1.56 0.352-4
6 6.867x104 0.595 3.20 2.07 0.324
6 6.867x10 0.3 3.20 1.05 0.200

6 6.867x10" 0.15 3.20 0.523 0.082
6 6.867x10"4 0.075 3.20 0.260 0.025

-3
6 1.373x104 1.19 1.60 2.07 0.535

6 4.856x104 0.841 4.53 4.14 0.217-4

6 3.140x10.- 0.544 7.00 4.14 0.102
6 3.140x1C- 0.272 7.00 2.07 0.085
6 3.140xlO. 0.137 7.00 1.04 0.055
6 3.140x10.4 0.0686 7.00 0.523 0.024
6 3.140xlO- 0.0343 7.00 0.260 0.0078
6 4.856xl0 . 0.421 4.53 2.07 0.171

6 1.717x10 1.488 1.28 2.07 0.567

6 1.030x10- 0.892 2.14 2.07 0.462

J.1
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TABLE 2

Values of the collision strength g as a function of 3.For

3 ~0., = .732. For 3 3.0, we arbitrarily set g 0.60.

0 0

0.5 0.18

1.0 0.33

1.3 0.43

2.0 0.51

2.5 0.56

3.0 0.60
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TABLE 3

Values of the Collision efficiency.

2
n a A/vf

0

0 1.00

1 0.99

2 0.91

3 0.78

4 0.65

5 0.54

6 0.45

7 0.38

8 0.32

I9 0.28

10 0.25

11 0.22

12 0.19

13 0.18

.114 0.17
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FIGUE CAPTIONS

I. Schematic diagram of coordinates used to describe the Rydberg
atom and its collision partner.

2. The function f(v), which we interpret as the probability that
a collision between the electron and the collision partner will
cause a change of angular momentum level of the electron.

3. The function g(a), which we interpret as the probability of
encounter between the Rydberg electron and a collision partner.

4. The A-mixing cross sections for Na(nd) + He. The calculation
of de Prunel and Pascale obtained upper and lower limits to the
cross sections.

3. The Z-mixing cross sections for Na(nd) + Ne. The calculation
of de Prunel4 and Pascale obtained upper and lower limits t6
the cross sections.

6. The L-mixing cross sections for Na(nd) + Ar. The calculation
of de Prunel& and Pascale obtained upper and lower limits to the
cross section.

7. The 1-mixing cross sections for Rb(nf) + He. The calculation
of de Prunel and Pascale obtained upper and lower limits to
the cross sections.

8. The 2-mixing cross sections for Rb(nf) + Ar. The calculation
of de Prune' 1 and Pascale obtained upper and lower limits to
the cross sections.

9. The A-mixing cross sections for Rb(nf) + Xe. The calculation
of de Prunel& and Pascale obtained upper and lower limits to
the cross sections.

10. The L-mixing cross sections for Na(nd) + N2 . The calculation

of de Prunelf and Pascale obtained upper and lower limits to
the cross sections.

11. The 1-mixing cross sections for Na(nd) + CH .
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12. The .I-mixing cross sections !or Xa(ad) + C 3H a' The unusual dip
at n-13 is discussed in the text.

13. The A-miixing cross sections for Xe(af) + CO 2
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.....

Abstract

Wavefunctions and potential curves for the ground X 1 + state and

I. +
eihrt excited states of + and . symmetry of CH have been obtained

using ab initio configuration interaction (CI) methods. In order to

take proper account of valence-Rydberg mixing, Rydberg functions were

included in the basis set. The orbitals used in the set of reference

configurations for the CI wavefunctions included both valence and Rydberg

orbitals, determined from a multiconfiguration self-consistent field andI
a natural orbital calculation, respectively. Transition moments between

the ground electronic state and the 21 +, 31 Z + , A and 2 states have

been computed, and the importance of these states in photodissociation

of CH is discussed.

*BI
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I. Introduction
+

The CH+ molecule has been of great interest to astrophysicists
1

ever since its discovery in diffuse interstellar clouds. In particular,

+
the abundance of CH appears to be as much as 30 times larger than

predictions based on probable formation and destruction mechanisms in

interstellar clouds.2 Also, many absorption lines observed in diffuse

interstellar clouds remain unidentified.3  Transitions to excited states

+
of CH , not yet discovered in the laboratory, have been suggested as

.4
possible origins of some of these lines. A detailed understanding of

the structure and radiative transitions of this molecule could lead to

insights regarding these astrophysical observations.

+ I1+
The ground electronic state of CH has Z synmetry and the oscill-

ator strength of the only known dipole transition A - XZ + has been

3 6
calculated and measured. Accurate potential curves for the four lowest-

lying electronic states, XI Z Ai, 3f and 3+ , dissociating to the lowest

separated-atom limit C (2 P) + H(i S) have been calculated by Green et al. 7

No higher-lying excited states are reliably known, although Lorquet et al. 8

produced some excited state potential curves showing a bound 1EZ state

1 + 9
dissociating to C( D) + H . Watson, Stewart and Dalgarno, using the

random phase approximation, obtained large oscillator strengths for

+ 1+
transitions in CH from the X state to higher excited states. However,

the calculation was carried out at only one internuclear separation, so

B-3
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that che repulsive or attractive nature of these excited states was not

de termrined.

In this work, we have undertaken a study to characterize those

+
excited states of CH , which, in dipole transitions from the ground state,

can give rise to band spectra or to direct dissociation of the molecule.

We have calculated potential curves, wavefunctions and transition moments

1 + 1
for all eight states of Z ori sy umetry lying within -17 eV of the

ground state. In Section 1I we discuss the basis set choice and the

*construction of configuration interaction wavefunctions which allow for

adequate description of valence and Rydberg state interaction. Additional,

larger calculations designed to test the results obtaindd are also des-

cribed. The results of all the calculations as well as the astrophysical

implications are detailed in Section III.

II. Calculations

+
The CH excited states of interest in studies of the interstellar

medium must lie within 13.6 eV of the ground state because there are no

photons in the interstellar medium with hv > 13.6 eV due to the ionization

of atomic hydrogen. However, in order to compute such states accurately

4 the interaction with states lying somewhat higher in energy has to be

+
considered. Figure I shows the lowest six CH separated atom limits

which give rise to states of singlet E or !I symmetry and the measured

energy differences. The lowest two Rydberg limits C( P, 2p3s) + R and

C +( 2P) +9(2s,Zp), lie within 0.2 eV of each other and within about

B-4
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10 eV of the ground state asymptote. States arising from these Rydberg

asymptotes may be of astrophysical interest. In addition, states arising

from the lower-lying asymptotes probably experience some valence-ydberg

mixing-at small internuclear separations. Thus, it is necessary to design

a calculation which gives a balanced treatnent of both valence and Rydberg

states.

Electronic energies and wavefunctions were calculated using the

configuration interaction (CT) method. Each wavefunction was expanded

in an orthonormal, n-particle basis set of C symnetry-and equivalence-

restricted configuration state functions (CSF). These CSF's were Linear

combinations of Slater determinants which have the appropriate molecular

symnetry and multiplicity. The Slater determinants were constructed

from an orthonormal set of molecular orbitals which were expanded in

terms of an elementary basis set of Slater-type functions (STF) centered

at the atomic nuclei.

The extended SCF basis set used in these calculations is given in

Table I. The (Ss/4p) basis of Clementi and Roetti for C( P) was

augnented by two 3d functions, with exponents chosen to account for the

distortion due to both long range electrostatic interaction and short

range chemical interactions. Rydberg 3s and 3p functions with exponents
1 3

optimized for the SCF energies of carbon atom Rydberg states P and 3D,

respectively, were added to the set. The hydrogen atom basis was chosen

to describe both the separated-atom and molecular-bonding regions, as

B-5
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well as the Rydberg 2s and 2p limits. The molecular basis set consisted

of 24a, 12, and 36 functions.

In the construction of the CI wavefunctions, care was taken to treat

Rydberg and valence states in an equivalent manner in order to properly

describe valence-Rydberg mixing. The configuration lists for the I and

symmetries consisted of all single and double excitations with respect

to the lists of reference configurations given in Table 2, in which both

valence and Rydberg orbitals were occupied. In order to dissociate the

molecule correctly, in these configurations, the 3a and 4a orbitals,

which asymptotically have the form 3a - 2p¢ + isH and 
4a - 2pc - ISHP

were treated equivalently. The 5a, 6a, 2, and 3n orbitals are Rydberg

orbitals. The number of configurations in the CI wavefunction was 6808

for the E symmetry and 9573 for the - symnetry.

For each internuclear separation, the orbitals for these calculations

were determined by a four-step procedure designed to provide physically

realistic Rydberg as well as valence orbitals. In the first step, valence

a orbitals were determined by a multiconfiguration self-consistent field

I II -(MCSCF) calculation on the X E state which included the configurations

222Z 22 2la 2a 3a and Ia 2C 4a , required for proper dissociation, along with the

2 22 2 22.
correlating configurations la 3a IT and la 4a 21- . With the a orbitals

frozen in the second step the valence TT orbital was determined from a

properly dissociating MCSCF calculation on the A state whih included the

configurations la 22a 23alT and a 22a 2 4li. In the third step, two RydberS
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a orbitals were obtained as natural orbitals from a frozen core two

electron CI calculation for Z Rydberg states which included all config-

urations with one electron in the 3a or 4a orbital and one electron in an

external a orbital, i.e. na for n ' 5. In this calculation, six electronic

states were obtained and the occupied Rydberg orbital from the lowest two

states in which the Rydberg orbital was occupied was selected; i.e., one

orbital was taken from each state. Finally, two Rydberg ir orbitals were

obtained in an analogous manner from a C1 calculation for Rydberg

states which included all configurations with one electron in the 3a or

4a orbital and one electron in an external TT orbital, i.e., nTT for n a 2.

The orbitals thus obtained were used for the C1 calculations on both

the Z and 2 symetries. The calculations were performed at 25 internuclear

separations between R - 1.5 a and 20 a .o 0

A limited number of larger configuration interaction calculations

were carried out to cest whether certain improvements which could be made

in these calculations would significantly affect the results. As will be

discussed in the next section, the basis set used resulted in errors in

asymptotic excitation energies as large as 0.4 eV. Therefore, in these

S I extended calculations an enlarged basis set listed in Table 1 was employed.

10 3
This set consisted of the (6s/4p) basis of Clementi and Roetti for C( P),

augmented by two 3d functions, two 3s and two 3p Rydberg functions and

one 4f function. The diffuse 3d function was chosen to maximize the

polarizability of the C(3 P) atom and the tight 3d function to maximize

B-7



+ 3-the energy lowering in a CI calculation on the CH+ molecule (Z state).

The tighter 3s and 3p Rydberg functions were optamized with respect to

SCF energy of C( S) and C( 3D) respectively. Finally, the total energy

+ 3 -
of the CH Z state was found to be insensitive to the 4f exponent. No

changes were made in the H basis functions in the enlarged basis set.

All of the reference configurations listed in Table 2 have the 2a

+ 2 2 1orbital doubly occupied although one of the asymptotes C (Is 2s2p D) +
+
H under consideration has the carbon 2s orbital singly occupied. In the

extended calculations, the 2a orbital was included in the valence space

and the configuration list was not limited by reference to a set of

specific configurations. For the calculations on the I symmetry, the

valence set consisted of the 2a', 3a, 4a and 1,r orbitals, the Rydberg set

included the 3a, 6a, 7a and 2r- orbitals and the remainder of the orbitals

comprised the external set. The configuration list included all config-

urations generated by distributing (i) 4 electrons in the valence set and

(ii) 3 electrons in the valence set and one in the Rydberg set, plus all

single and double excitations with respect to the configurations in (i)
1

and (ii). For calculations on the s symmetry, the Rydberg set consisted

of only the 2rr orbital. The la core orbital was kept fully occupied in

all configurations. This procedure resulted in 15454 configurations for

the 1Z+ symmetry and 13063 configurations for the 1l symmetry.

The molecular orbitals used in the extended calculations were

determined by the same four step procedure previously described.
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Calculations of the five lowest 1states and four lowest 1 states were

carried out at a limited number of internuclear separations. Results of

these test calculations are presented and compared with the results of the

calculation described previously.

The MCSCF calculations were performed using a program developed by

J. Hinze. All other calculations were performed using the ALCHEMY

system of programs developed by P. S. Bagus, B. Liu, A. D. McLean and

M. Yoshimine.

I1. Results and Discussion

A. Potential curves and asymptotes
1+

In Figure 2, potential curves for the five lowest Z and four lowest

.1 states of CH are presented. The energies of these states as a function

of internuclear distance are listed in Table 3. Of these nine states,

+ +
only the X Z , A and 2 Z states are bound with respect to their asymp-

totic limits. Dissociation energies, equilibrium separations and spectro-

scopic constants for the X and A states are compared in Table 4 with the pre-

7
vious CI calculations of Green et al. and with experiment. Satisfactory

agreement with both sets of values is observed. Discrepancies for the

A l state are somewhat larger than those for the X I + state.

Excitation energies of the four asymptotes considered in this work,

relative to the lowest asymptote C+ ( 2P) + H( 2S) at the separated atom

limit of R - 20a are given in Table 5. The excitation energies of the
0 -
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ID + 1S  +
C( 0) + R and the C( S) + H asymptotes are each larger by 0.4 eV than

the experimental values. However, the calculated splitting between the

two states of neutral carbon C( D) and C( S) is exactly equal to the

spectroscopic value. In effect, the error in the ionization potential

of the carbon atom is -0.4 eV in this calculation. Excitation energies

are given critical attention in the comparison becween these values and

-he results of the extended CI calculations presented in the next section.

B. Extended CI Results

The extended CI calculations were carried out at the R - 20a
0

asymaptote and at three points in the interaction region. Excitation

energies for these calculations are also listed in Table 5. Discrepancies

in excitation energies for the first two excited limits are lowered from

0.4 eV to 0.2 - 0.25 eV. There is, however, no change in the excitation

energy of the carbon Rydberg limit, C( P) + H + . Asymptotically, the

total energy from the extended calculations is lower by 3 millihartrees

for the XIZ+ state and by 2 mh for the A 1. state.

Interaction potential curves were compared at internuclear distances

of 1.9, 2.2, and 3.4 a . For all nine states, the maximum energy dis-0

crepancy observed was 0.3 eV; all others are : 0.2 eV. In the extended

calculations, near the potential minimum, the A 1 state was lowered by

-0.2 eV while the XI Z+ state was virtually unchanged. That the A I is

less well determined in the main calculations reported here than the

Xr + state is further confirmed by the greater discrepancy with respect
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to experimental values of the spectroscopic constants in Table 4 for the

A I state than for the X 1 state. However, in general, energy shifts of

this magnitude have little effect on the qualitative features of the

potential curves. Thus it was concluded that the main calculations

+
reported here realistically characterize the excited states of CH

C. Discussion of Potential Curves

In using potential curves shown in Figure 2 to interpret physical

processes, the most reliable information is obtained by shifting the

curves so that their asymptotes have the spectroscopic separation, given

i'n 7a,:e 5.

The avoided crossing of the 2 1-- and 3 1-- states gives rise to a

hump in the 2 1Z state with a height of --0.5 eV between 3 and 4 a 0 A0

-5
cursory search for quasi-bound levels on an energy grid of 5 x 10

hartrees, led to three resonances at 0.296, 0.466 and 0.588 eV above the

separated atom limit. The 2 1 + state appears to experience a small 1/R4

attraction at large R with an energy minimum of about 0.2 eV at R - 6.2 a

This, however, is well outside the Franck-Condon region of the ground

state.

The two highest E and Il states calculated also appear to interact.

The 4 1 Z- and 5 1 Z+ states (as well as the 3 1 and 4 1 r states) are very

close in energy at R ; 3.5 a , creating ripples in the potential curves.0

The 51E+ also appears to have a quasi-bound vibrational level about

2.8 eV above the separated atom limit.

B-11
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_iti clear chat, with the exception of the quasi-bound vibrational

levels mentioned above, no new band spectra of CR are to be found. The

excited scates will be important, however, for photodissociation. With

the asymptotes shifted to agree with experiment, the vertical excitation

energies at R = 2.1 a from the v=0 level of the ground state to the
0

2 , 3 -  and 2 .Z states are 8.02, 12.92 and 13.58 eV, respectively.

+

These states may be significant in photodissociating CH in the inter-
+

stellar medium. In comets where a large amount of CH can be observed

and where there is no Lyman cut-off of the solar photons, even higher

+
states may be important in the photodestruction of CH

D. Transition Moments

The electric dipole moments for transitions between the ground state

1+ 1 + 1 1 +
and the 2 Z+ , 31, A and 2 : states of CH are given as a function of

R in Table 6 and Figure 3. Properties, such as the transition moment,

tend to be more sensitive than the energy to the quality of the wavefunction

used to calculate them. When the transition moments from the main calcu-

lations were compared with the results of the extended CI calculations

1 + 1+ 1there was excellent agreement for transitions to the 21 +  31 , Al. and

21, states but fairly large discrepancies for transitions to the higher

1 + 1+ 1
states, 4 E , 5 Z , 3 Z and 4 fl. Since one of the main improvements in

the extended CI calculations is the inclusion, in effect, of 2s excited

reference configurstions and since the C+ ( 2D) asymptote to which the

4 11+ and 3 dissociate is a 2s excited configuration, this observation
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is reasonable. We, therefore, present transition moments only for the

lower states, which include all states assessible in the interstellar

medium.

Our values for the X-A transition moment are generally within 207. of

those of Yoshimine et al. which was used to predict an oscillator strength

for transitions between the lowest vibrational levels of each state in

6
excellent agreemtnt with a subsequent experimental measurement. At

R - 20 a the transition moments between the ground state and the first
0

two excited states of each symmetry are zero, consistent with the fact that

+2
there is no dipole transition possible between C ( P) + HliS) and either

1D 1S + 31+
C( 0) + H+ or C( S) + H. At R = 2.1 a , transition moments to the 3

1

and 2 are relatively large, in agreement with the finding of Watson

et al. 9  he sum of the electronic oscillator strengths to all the excited

states presented here is 1.08. There are many peaks and dips in the trans-

ition moments for the higher states which are indicative of the changes

of character in the wavefunction occurring due to valence-Rydberg mixing.

1+ I1+1Photodissociation cross sections to the 2 + , 3 Z and 2 7, and

11
excited states will be reported separately. The photodissociation cross

section and rates for the A-X transition have been calculated by Uzer and

Dalgarno, using the transition moments of Yoshimine et al.5
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E• Sumarv

Potential curves for a dipole transition momentus to excited states

+ 1+
of CH' have been computed using large CI wavefunctions for both 1: and

symmetry. in order to obtain accurate valence-Rydberg interactions,

a Slater basis set containing Rydberg functions was used and both valence

and Rydberg molecular orbitals were included in the reference set of

configurations from which single and double excitations were allowed.

All the excited states except for the Al:_. were found to be repulsive in

the range of internuclear separations for which the X I + is bound

(1.5 a - 5.5 a ). Thus, these calculations show that none of the
0 0

unidentified absorption lines observed in diffuse interstellar clouds can

be attributed to CH . Several resonances (quasi-bound vibrational levels)

1+ 1 +
due to humps in the 2 Z and 5 Z potential curves may be observable.

From inspection of the transition moments, it appears that photo-

dissociation cross sections to the 2 1: and 3 Z will be large. These

states, in addition to the 2 1 Z, may be significant in photodissociating

( ; CH in the interstellar medium.
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Table I

Slater Basis Set for CHl

Extended Calculations

Extended

Calculations
n a- Ca -l Ca-1.

is 9.25013 9,48256 is 1.7

1S 5.53875 5.43599 1s; 1.0

2s 5,30567 4.20096 iS 0.5

2s 2.04126 2.68435 2s 1.0

2s 1.30552 1.52427 2s 0.5

2s 1.05749

3s 1,29478 0,5856 2p2.0

3s 0.58380 0.3 2p 1.0

*2p 6,53286 6,51003 2p0.5

2p2.60786 2.60051 3d 2.0

2p1.44037 1.44361

2p0.96499 0,98073

3p1.23210 0,4855

3p0.47960 0.24

3d 2,34 2.009

3d 1.24 0.95

4f 2.3
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Table 2

Reference Configurations for C1 Calculations

1+ 1

l222 1222o1

la 2a 23a 2la 22 3al-,T
i222 !22 2+rr

la 2a 4e la Za4alTT

22 22
la 2a 3c4a la 2a 3a2-,,

la 2aITT1a 2a 4a2r

la 2a 35"

!ao 2a 23o6a la 2a 2403iT

122"46l~a 2a 24a5a

la 2a 24c6a
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Table 3
POTENTIAL CURVES FOR "-"+ AND 1 fl STATES OF CH

GIVEN IN HARTREES RELATIVE TO THE ASYMPTOTIC ENERGY OF EACH STATE'

R(%) X1Z4  21Z 31'Z 41 Z 5Z +

1.3 -0.03335 0.16712 0.32063 0.26491 0.29191
1.6 -0.07786 0.11777 0.26916 0.21644. 0.23624
1.7 -0.10867 0.08192 0.23058 0.18132 0.19408
1.8 -0.12924 0.05614 0.20125 0.15S76 0.16234
1.9 -0.14210 0.03790 0.17845 0.13661 0.13909
2.0 -0.14920 0.02530 0.16021 0.12128 0.12323
2.1 -0.15197 0.01690 0.14512 0.10849 0.11326
Z.2 -0.15154 0.01163 0,13221 0.09807 0.10726
2.4 -0.14424 0.00737 0.11065 0.08353 0.10193
2.6 -0.13200 0.00798 0.09286 0.07490 0.10080

2.3 -0.11762 0.01079 0.07771 0.06945 0.10040
3.0 -0.10275 0.01418 0.06447 0.06523 0.09274
3.2 -0.08836 0.01722 0.05257 0.06080 0.07332
3.4 -0.07500 0.01935 0.04169 0.05478 0.05740
3.6 -0.06293 0.02027 0.03183 0.04600 0.04781
3.8 -0,05225 0.01979 0.02331 0.03623 0.04273
4.0 -0.04297 0.01788 0.01644 0.02753 0.03996
4.3 -0.03151 0.01290 0.00934 0.01738 0.03820
4.6 -0.02270 0.00692 0.00520 0.01039 0.03748
S.0 -0.01433 -0.00003 0.00217 0.00468 0.03519
5.5 -0,00793 -0.00541 0.00020 0.00117 0.02858
6.0 -0.00441 -0.00759 -0.00083 -0.00024 0.01954
7.0 -0.00154 -0.00711 -0.00148 -0.00075 0.00168
8.0 -0.00068 -0.00501 -0.00129 -0.00063 -0.01080

20.0 -0.00000 0.14672 0.19880 0,35102 0.36497

R(%) Atf 21n 31n 41n

1.3 0.10645 0.44383 0.26283 0.29568
1.6 0.06008 0.38467 0.20883 0.24415
1.7 0.02710 0.33672 0.17097 0.20622
1.8 0.00402 0.29822 0.14410 0.17786
1.9 -0.01175 0.26714 0.12496 0.13373
2.0 -0.02215 0.24156 0.11132 0.12767
2.1 -0.02865 0.21984 0.10152 0,10336
2.2 -0.03234 0.20060 0.09394 0.08342
2.4 -0.03438 0.16603 0.07421 0.06593
2.6 -0.03266 0.13472 0.05958 0.06166
2.8 -0.02965 0.10713 0.05349 0.05991
3.0 -0.02655 0.08373 0.05126 0.03841
3.2 -0.02267 0.06644 0.05273 0.05635
3.4 -0.01992 0.05146 0.04998 0.05425
3.6 -0.01746 0,03954 0.04393 0.03256
3.8 -0.01525 0.03002 0.03592 0.05071
4.0 -0.01326 0.02237 0.02787 0.04824
4.3 -0.01068 0.01355 0.01780 0.04347
4.6 -0.00854 0.00719 0.01065 0.03809
5.0 -0.00626 0.00157 0.00477 0.03103
5.5 -0.00420 -0.00223 0.00115 0.02335
6.0 -0.00281 -0.00379 -0.00031 0.01710
7.0 -0.00132 -0.00384 -0.00083 0.00708
8.0 -0.00068 -0.00282 -0.00063 -0.00149

20.0 -0.00069 0.14817 0.35221 0.37578

The asymptotic energy for each state is taken to be the cCIatd so ov t R • 20 a. The
enwiye for 4 20 4o ar gven relate to the aiculiated X* asymnotote of -37.8703857

hwtee. 1 a - 0.52918 A; I hartreg - 27.2116 OV.
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Table 4
+ - 1+

Spectroscopic Constants for CH X Z and A Z States

This Work Green et al. Experiment

1 + (Ref. 7) (Ref. 13)

R (a) 2.133 2.136 2.137
e o

D (eV) 4.140 4.11 4.27 _=0.02

X- (cm" 1)2743 2740

A I_

R (a) 2.381 2.332 2.333

e o

D (eV) 0.936 1.069 1.29
ed

(cmn 1526b  1865d

e

T 23690 24970 240 33e
e

a) D 0o + w /Z using values in Ref. 13

b) Using 4 vibrational levels

c) Using experimental T 0 D 0for X state and e / 2 for A state

d) Applies to v ic 2

,) Using experimental T and w e/2 for X and A states.
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Table 5

Excitation Energies Relative to C +(2P) + H(2S)a in eV

1z+ I

Extended Extended
Calculations Calculations Spec troscopic

C( P) + H 9.93 9.93 10.22 10.22

+ 2 29.9
C (2D) + H( S) 9.55 9.44 9.58 9.44 9.290

C( S) + a +.41 5.28 5.022

C( D)+H 3.99 3.82 4.03 3.83 3.602

a) Asymptote (R-20a ) for X IZ state.
0
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Table 6

CH Transition Dipole Moments

2t+) (I:+I +)x+VI ) lx+2 ,

1.5 0.2655 -0.3846 -0.4062 0.6202

1.6 0.2509 -0.4680 -0,3842 0,6731

1.7 0.2345 -0.5588 -0.3611 0.6873

1.8 0.2165 -0.6563 -0.3373 0.6873

1.9 0.1966 -0.7592 -0.3128 0.6781

2.0 0.1747 -0.8653 -0.288! 0.6592

2.1 0.1507 -0.9712 -0.2634 0.6287

2.2 0.1244 -1.0738 -0.2389 0.5862

2.4 0.0633 -1.2591 -0.1919 0.4762

2.6 -0.0110 -1.4105 -0.1492 0.3658

2.8 -0.1012 -1.5277 -0.1128 0.2782

3.0 -0.2102 -1.6118 -0.0833 0.2116

3.2 -0.3410 -1.6617 -0.0563 0.1561

3.4 -0.4958 -1.6736 -0.0380 0.1137

3.6 -0.6744 -1.6415 -0.0246 0.0790

3.8 -0.8694 -1.5598 -0.0151 0.0507

4.0 -1.0600 -1.4308 -0.0088 0.0276

4.3 -1.2777 -1.1888 -0.0032 0.0013

K 4.6 -1.3743 -0.9608 -0.0008 0.0165

5.0 -1.3510 -0.7363 -0.0003 0.0301

5.5 -1.1880 -0.5576 -0.0008 0.0359

6.0 -0.9721 -0.4409 -0.0015 0.0346

7.0 -0.5783 -0.2869 -0.007 0.024S

8.0 -0.3173 -0.1820 -0.0013 0.0151

20.0 0.0002 0.0003 0.0000 O.UOCi
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Figure Captions

Figure 1: Separated-atom limits giving rise to Y or '1 states

of CH . Experimental energy separations are shown as

taken from tables compiled by C. E. Moore, NBS

circular 467, 1949.

* + 1+
Figure 2: Potential curves of CH: five of + symmetry and

four of l1 symmetry.

Figure 3: Transition moments from the ground state to the
1 + 1 + 1 12 Z , 3 Z , A I and 2 1 states ofH as a function

of internuclear separation. The relative signs of

the transition moments are arbitrary.

IB2

B-22
I,



CH+ ASYMPTOTES

/ C ( 2P)+ H (2s, 2p)
C P, 2p3s) +H

D)+ H (2S)
8 10.20 eV

10.02 eV

>
6 9.29 eV

L I 4 5.02 ev +uJ C (D)+ H

2 1- o- - c( 3 P)H +

3.60 eV

0 C (2 p ) + H (2S)
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APPENDIX C

COMPARISON OF ION PAIR FORMATION
IN THE SYSTEMS Ar* + 12 and K + 12

A. P. Hickman and Keith T. Gillen
Molecular Physics Laboratory

SRI International
Menlo Park, California 94025

ABSTRACT

A simple model that has been used extensively by Los and coworkers

to treat ion pair formation in collisions of alkali atoms with diatomic

molecules is extended to include continuum coupling via a competing

Penning ionization channel. This extended model is then used to calcu-

late the differential cross sections for ion pair formation for the

system Ar + 12 over the energy range 28-154 eV and to compare with a

previous treatment of K + 12. In the absence of significant competition

from continuum processes,Ar* is expected to behave in a manner similar

to K, since the active electron is an unpaired 4s electron in both cases.

We perform model calculations for Ar + I to investigate the effects of
2

varying the potential curves and charge exchange matrix elements and of

including a continuum coupling function 1" (R). Comparison with previous

calculations for K + 12 suggests increased repulsion on the Ar " 12

surfaces relative to those of K - 1 . The competing mechanisms of

excitation transfer and Penning ionization may have a small effect upon

the ion pair angular distributions.

MP 80-33

C-1

I, o



I INTRODUCTION

The study of a pair of generally similar reactions enables one to

isolate subtle effects that arise specifically from the differences

between the two systems. Recent measurements of the differential cross

section for ion pair formation in collisions between halogen molecules and

alkali atoms or metastable rare gas atoms provide such an opportunity.

Over the energy range 30-150 eV, all of the major features observed

in the angular distribution for the reaction

Ar ,0) + 12 - Ar 12 (1)

can be correlated with those observed 2 -4 in the analogous reaction

K + 12 - K + 2 1 (2)

However, there are differences in the ratios of the intensities of various

features and in the position of the rainbow angle. The general similarity

is consistent with the fact that both K and Ar 3 P) have an active,

unpaired 4s electron. The observed differences between the two reactions

should be related to the inner shell vacancy in Ar and to the additional
competing channels energetically accessible to the system, including

Penning ionization:

* +
Ar + I -" Ar + 1, + e (3)

2

In this paper we present model calculations designed to elucidate the

causes of the observed differences in the scattering data.

C-2
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Ion-pair formation in the alkali-halogen system has been extensively

5-7
investigated both experimentally and theoretically. These reactions

have been modelled quite successfully by Los and coworkers '
6 using

8,9
classical trajectory surface-hopping techniques that demonstrate the

essential features of the reaction mechanism leading to ion-pair production.

Here we have modified and extended those model calculations to include

coupling to the continuum (reaction (3)). We estimate the autoionization

rate £ (R) using a simplified form of a technique proposed recently by

10
Miller and Morgner. We are therefore able to perform quantitative

calculations that examine the effect of competing channels upon the ion

pair distributions in reaction (I).

In Section II we present the details of the model calculations and

discuss the inclusion of continuum coupling. Our results are presented

and discussed in Section III, and Section IV contains a summary.

i
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1I THEORY

A. Sunary of the Model

We have adopted the theoretical approach developed by Los and co-

2,5,68,
workers, which is a classical-trajectory, surface-hopping model8'9

with the following additional approximations:

1. Simple analytic potentials are constructed from pairwise

interactions for the covalent electronic state K + 12 and
+2

for the ionic state K + 12

2. The cross sections are obtained as the average of cross

sections for various orientations of the target molecule.

The axis of this target is assumed not to rotate during

the collision. Molecular vibration, however, is included,

as explained below.

3. For each trajectory, the classical vibration of the molecule

is calculated numerically assuming Morse potentials, and

the deflection of the projectile is obtained analytically

using classical perturbation theory.

An essential feature of the model is that the ionic and covalent

surfaces cross at an Ar -12 distance R that depends on the vibrational

coordinate of the molecule. This fact influences the collision in the

following way. The system begins asymptotically on the covalent surface.

When the particles reach the location of the crossing with the ionic

surface, the Landau-Zener formula is used to compute the probability of

switching to the other surface. As shown in Figure 1, there are two

C-4
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possible paths to ion-pair formation. The surface crossing may occur on

the inward part of the trajectory (the dashed line) or on the outward part

(shown by the dotted line). A transfer to the ionic surface will initiate

an expansion of the I bond since I has a larger equilibrium internuclear
2 2

distance than I . If this transfer occurs on the incoming trajectory, the

resulting I, expansion will yield an effective vertical electron affinity

that increases with time. This will increase the radius R at which the

second surface crossing is encountered on the outward part of the trajectory.

Since the matrix element connecting the two surfaces decreases strongly

with increasing R, the probability of a diabatic path through the second

crossing may be significantly larger than at the first crossing. These

effects have already been thoroughly discussed in the literature.
1 6

The analytic form of the potential surface we have used differs

somewhat from the form used in reference 2. Ours is defined in terms of

Figure 2 to be

V0 0  = V(R1 ) + V(R2 ) + v0 (r) (4)

0n=V(l .5 0._5
V 0 V(R ) - . + V(R2 ) - + V (r) (5)

1 2

v 0(r) and v (r) are Morse potentials for 12 and 12 respectively. The

same Morse parameters were used as in reference 2, namely, D - 1.54 eV,

1.87 and r - 2.67 L for 2 and D' - 1.02 eV, ' a 1.23
e 2

and r ' a 3.20 A for 12 V(Ri) is a repulsive term of the Born-Mayer form,1 2

V(R) A BRi (6)
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4
where, following reference 2, we initially use A = 6.4 x 10 eV and

B - 4.762 A . Note that for simplicity the same constants A and B

are used here for the ionic and covalent terms. The potentials we

use are much simpler than those of reference 2. Since ab initio

calculations are not available, we choose to use potentials with as

few adjustable parameters as possible.

The potential surfaces defined by Eqs. (4) and (5) do not reflect

the multipl-icity of states arising from the inner shell vacancy in Ar

Our simplified model is equivalent to assuming that all of the covalent

surfaces are degenerate, and that all of the ionic surfaces are

degenerate. This assumption appears reasonable at large values of R,

where the surfaces cross. In this region we expect no inner shell re-

arrangement processes. The core electrons should have only a minor

influence on the potential shapes and coupling matrix elements. This

fact is indeed the major reason for the strong analogy to alkali

reactions and the justification for our use of the single surface

crossing and the coupling matrix element angular dependence 13 (COS

in Eq. (7) below) that are appropriate to alkali systems. The inner

,
* shell vacancy in Ar would, however, be expected to influence surface

parameters at much smaller R values and thereby could affect the shape

of the differential cross sections. We will return to this point later.

C-6



We use the same form for the coupling matrix element as in reference 2-

. R *

V1 2 (R,r,S) - c1 (1 * EA(r)] R e Cos C (7)

wh R
where R (I + EA(r) ) •  

(8)

I is the ionization potential of the projectile and EA(r) is the vertical

electron affinity of the molecule as a function of the separation r.

(c1 in eV; I and EA in a.u.; R in A; c 2 in k71). Note that the diagonal

terms V and V are orientation-dependent because they are defined in
00 11

terms of R and R2. Note also that the angular dependence of V12 forces

13
it to be zero at the angles required by symmetry. Initially the

constants c1 - 0.28 eV and c2 - 0.65 1"1 were used 2 for both reaction (1)

and reaction (2).

For each orientation of the target (in a space-fixed frame), we wish

to calculate the two branches of the classical deflection function.

These two branches give the scattering angle as a function of impact.

parameter for trajectories in which the surface crossing occurs on the

inward or outward part of the trajectory. (If the crossing occurs

twice, or not at all, ion-pair formation does not occur and the trajec-

tory is not counted.) For each impact parameter, the scattering angles

are therefore calculated for two sequences of events. In both cases,

the 1I molecule begins at rest on the neutral potential curve v0 (r) at

the equilibrium distance r , and the projectile follows a straight-line

path with constant velocity throughout the collision. For the ionic

C-7
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branch of the deflection function, the system is assumed to switch to

the ionic potential at the first crossing. Then the 12 molecules

begin to move classically on the potential v1 (r), beginning at rest at

r - r (1 2). The location of the second crossing is determined

numerically by monitoring the oscillatory motion of the target and the

rectilinear motion of the projectile. For the covalent branch of the

deflection function, the molecules do not begin to vibrate until the

crossing is encountered a second time, so that the first and second

crossings occur at the same intermolecular separation R. For both

branches of the deflection function, the orientation angle 7

is computed at both crossings. The orientation influences the

transition probability through the factor cos o in Eq. (7).

The preceding discussion shows how the appropriate potential is

determined at each point along a given trajectory. The scattering

angle is then determined by integrating the cumulative momentum trans-

fer perpendicular to the rectilinear motion, according to standard

14
formulas of classical perturbation theory. The deflection is easily

calculated analytically because the functions in equations (4) and (5)

*I are written as sums of two-body potentials .

In order to obtain the cross section, it is also necessary to

calculate the probability that the system will follow a given trajectory.

15
This is done using the Landau-Zener formula. The total probability
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for a given sequence of surface crossings or avoided crossings is the

product of the probabilities for each event separately. This is easily

calculated once the locations of the two crossing points are known. The

result for the cross section (for a particular orientation of the molecule)

can be summarized in the following formula:

ion coV
C sine - j dBon/db +j, I cov (9)

p ion(pcov) is the overall probability of following an ionic (covalent)

trajectory for a particular impact parameter b. The sums are understood

to be over all impact parameters that lead to the scattering angles G or

-0. Although eq. (9) presents the formal definition of the cross section,

we found it useful in practice to use a conventional histogram procedure.

B. The Penning Ionization Channel.

1. Estimating .'(R) for molecular systems.

7(R)/i is the rate at which particles are lost from an initial

channel into the ionization channel via the reaction (3). 1' is given by16'1 7

F-2rrp IH.4! (10)
22

- o<finall initiall

where H is the Hamiltonian, 4initial is the initial bound state wave function
*

(Ar + 12). inal is the continuum configuration (Ar + 12 + e) and p
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is the density of continuum states. If the continuum wave function is

normalized to unit amplitude asymptotically, then

2rfp = 4/k (12)

where the kinetic energy of the ejected electron is, in atomic units,

2
E - 1/2 k.

10
Miller and Morgner have suggested that the matrix element H can

fi

be written as the product of an overlap factor and a charge exchange

factor. Specializing to our case, Ar + 12, this would be the product

H 3 S x H (13)
fi fi fi

*

where S is the overlap between the valence electron orbital on Ar and

(o)
the final state continuum orbital, and Hfi is the matrix element for

the one-electron process

Ar + 12 - Ar + 12  (14)

10 (o)
Miller and Morgner 10 pointed out that Hf0 can be estimated using the

semi-empirical correlation formula of Olson et al. :18

IHfi(o)1 GR -R/C (15)

where R is the internuclear separation in a.u., and

1 hL

1/C 2 12 Ar(I +116

G (I2 IAr)/C (17)

where 12 and I Ar are the ionization potentials of 12 and Ar in a.u.,

C-10
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respectively. IHfi is then given also in a.u.

19
Based on past experience calculating continuum overlap factors

S fi, we have simplified the Miller-Morgner formula by setting Sfi f 1.

This approximation enables us to evaluate Hfi without numerical integra-

tion. Furthermore, since the potential surfaces are not in general known,

we calculate the density of states 2TTo from the energy of the ejected

• electron as R- . This information is available from spectroscopic data.

Miller and Morgner estimate that their formula is reliable within

a factor of three to five. We expect that our additional approximations

will degrade the accuracy somewhat, but the result should certainly still

be a reasonable order-of-magnitude estimate.

2. Ionization Probability as a Function of Impact Parameter.

The autoionization rate obtained in the previous section has

2 -XR
the form .(R) - R e However, we have found that over the important

range of R probed in the collisions, the numerical values of 7 can be

well fit (-10%) by the simpler form

-2R

-(R) -a 1 .
(18)

This is the form of Z that has been assumed in many previous semi-empirical

20,21
'i , studies.

We have found that for a 7 of the form of Eq. (18), a very simple

formula can be obtained, in the perturbation limit, for the ionization

probability as a function of impact parameter. Since

C-l1
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the translational motion is already treated using classical perturbation

theory, a perturbation assumption for the continuum coupling is con-

sistent with the rest of the model.

Let b be the impact parameter. Then the survival probability P(b)

that ionization does not occur on a trajectory of impact parameter b is

P(b) - exp[-2F(b)] (19)

where in the perturbation limit

F(b) f I-(R (20)

b 0

and v is the incident velocity.
o

Substituting Eq. (18) into Eq. (20), integrating by parts, and

substituting x - R/b, we obtain

a a b2

F(b) - f ea2bx dx (21)

* 0

The integral can be represented in terms of the modified Bessel function

Kl . Then

a Ib
F(b) - A KI(a2 b )  (22)

U
Further simplification is possible because of the relation

i -0. 932 x
* x K1(x) M 2.076 e0 (23)

which is valid to about 107. for 2 S x • 12. The final result is

2.076a -. 3ab

F(b) ft a2AV0 -0.932 a (24)
2 v2

, C-12
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Formulas (19) and (24) may now be incorporated into the model in

the following way. For each orientation, a deflection function is cal-

culated that gives the angular scattering as a function of impact parameter.

When the cross section is calculated from a particular branch of the

deflection function, a factor is first included to represent the probabil-

ity that the particles follow the correct sequence of curve crossings.

The result is then multiplied by P(b), which gives the probability that

the trajectory is completed without loss to ionization.

C-13
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III RESULIS AND DISCUSSION

A. K+I,

This reaction has already been treated in detail.2 -4 Here we

demonstrate that the use of the potentials defined in Section I-A

leads also to satisfactory agreement with experiment. In Figure 3,

we compare the calculated and experimental values at a lab energy (E0)

of 60 eV. The agreement is not surprising since our potentials are

nearly the same as those fitted to the data in reference 2. The major

difference is that we have neglected the small van der Waals term.

B. Ar + I: General Approach

1 *
Gillen et al. pointed out that their results for Ar + I, were

similar to those of Aten et al. for K + 12. The important differ-

ences are that the covalent peak is relatively somewhat smaller for Ar

+ 12 than for K + 12 and that the rainbow in the ionic peak occurs at

smaller angles. The first difference could be caused by the continuum

coupling in the metastable system or by differences in the potentials and

charge exchange matrix elements. The second difference should be asso-

ciated with a difference in the shape of the potential surfaces.

In this and the fallowing subsections we describe our quantitative

calculations to investigate possible causes for the experimental dif-

ferences. With only a qualitative knowledge of the Ar + I, potential

surfaces, we do not expect to determina uniquely the coupling parameters

C-14
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in this system. Hence, our approach to Ar + I. ion-pair formation

calculations is to start with the K + 11 parameters and determine the

changes in the distributions caused by individually altering the continuum

width ( - 0 initially), the surface coupling parameters, and the inter-

action potentials. The results should yield insight into the possible

causes of the differences observed between Ar + 1, and K + I2 in the

ion-pair channel.

We initially performed trial calculations for Ar + I, assuming

- 0 , and using the same pot.ential parameters as for K + I,. The

crossing point differs slightly for this system because the ionization

potential of Ar is slightly smaller than that for K. This change

increases Rc somewhat, and thereby decreases V,, slightly, but the

effect on the calculations was quite small. The calculated peak ratios

and the position of the rainbow angle were essentially the same as those

calculated for K + 1 and these values did not agree with the data for

Ar + 112.

C. Ar + 12: The Continuum Channel.

We then examined the effect of including continuum coupling. It

should be noted that 7(R) is assumed to affect only the covalent potential.

22
This is consistent with the conclusions of Hultsch et al. on similar

systems. One argues that Penning ionization of the covalent electronic

state is initiated by a one-electron process, namely the "exchange"

process, in which an electron from the ground state atom Jumps into the
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hole of the excited atom. There is then a large overlap between the

valence electron of the excited atom and the continuum orbital. In

+ 2
contrast for a system on the Ar + 12 surface, continuum coupling

necessitates a simultaneous two-electron rearrangement; such a process

would be expected to have a much lower probability.
=+

For the ground electronic state of 12 which is 9.3 eV above 12 we

follow the prescription of Section I-B and obtain (for 7 and R in atomic

units)

'(R) - 1.752 R2 e .902R (25)

For R in the range 4 - 12 a , this is well fit by the form
0

: -l.614R
0 (R) a 11.16 e a.u. (26)

We performed calculations using this form of :(R) and keeping the

other potential parameters the same. The result is that the continuum

coupling is not large enough to cause a significant effect on the ion-pair

distributions.

f The charge transfer matrix element estimated from Eq. (15) is a

one-electron matrix element. In fact :(R) should be larger than .' (R)
0

4 2
to account for the two equivalent electrons in the 2 Tj, orbital.

2 2
Moreover, the I molecule has a valence configuration (a 5p) (r Sp)

2 g ~
2 2 2

(1T,1 5p) (r,gSp) (TTgSp) , and these ten electrons have vertical

ionization potentials 23 between 9.3 and 13.0 eV. In the spirit of our
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one-electron estimate of . , we should also calculate approximate continuum0

coupling widths for the other electrons.

Although the ionization potential for electrons in the lowest two

of these orbitals is larger than the Ar excitation energy, Miller and

10
Morgner have shown that the electronic energy transfer to a pseudo-

continuum Rydberg state,

Ar + 1 2 (27)

(core-excited in this case) can be treated in an equivalent way to a true

continuum interaction. The details of the formula are slightly different;

however, the calculated coupling widths are found to be quite similar to

those for states whose ionization potentials are lower than the excitation

energy of the incoming state. Assuming the contributions for all ten

electrons can be added (a reasonable first approximation), we obtain a

resultant r(R) that is 10-15 times larger than r" (R) for R values between
0

j and 11 a.u.

The effects of various coupling functions r(R) on the calculated

angular distribution for reaction (1) at 28 eV are shown in Figure 4.

Continuum effects are generally more pronounced at lower energies, and

E - 28 eV is the lowest energy studied. Clearly r - 10 r , which
0 0

approximates the summed ten electron continuum coupling estimated above,

yields a noticeable depletion of the covalent peak. However, r > 100 r
0

seems required before the intensity ratios of the covalent and ionic
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peaks are in reasonable agreement with experiment. Since our approximate

estimates of F are relatively crude, it is possible that T' is indeed an

order of magnitude larger than estimated. Hence, the continuum coupling

effect could make some contribution to the attentuation of the covalent

peak in reaction (1). However, the larger r values (100 r , 1000 :- )0 0

give covalent peaks that are strongly attenuated at low T values; the

angular positions of the calculated peaks then disagree considerably with

the data.

*

D. Ar + I 2: Sensitivity to the Coupling Matrix Element V1 2 .

Another possible cause for the smaller covalent peak in Ar + 12

could be a larger coupling matrix element V1 2 . We have performed calculations

in which ' = 0 and the constant c 1 of V12 is varied [see Eq. (7)]. We find

that a significant change in V12 from the value for K + 12 is needed to

cause the desired change in Ar + 12 peak ratios. Figure 5 shows the

experimental angular distribution at E - 51 eV, compared with three
0

calculations assuming V12 multiplied by factors of 1.0, 2.5, and 5.0

relative to K + 12' Even though the peak ratios are accurately matched

by scaling V1 2 by approximately 2.5, we feel that this is an unreasonable

change considering the expected similarities between K and At . Although

the potential surfaces for the two reactions have quite different

symmetries, these differences are associated with the symmetry of the

Ar core. At the very large crossing radius (-5.7 ) between the ionic

C-18
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and covalent surfaces, the properties of the core should play a minor role

in the electron transfer process and the outer Ar electron should behave

like a 4s electron in K.

E. Ar + T2: Sensitivity to V2 2 .

Tt is obvious from Figure 5 that the calculated rainbow angle is not

in good agreement with the experimental data. None of the modifications

detailed above has altered the calculated rainbow position. Since its

position is most sensitive to the well depth in the ionic channel, we

investigated modifications to the potential parameters necessary for

achieving a match to the experimental rainbow angle. In our model, the

well depth is controlled by the choice of the parameters A and B in

Eq. (6). We found that varying these parameters to decrease the well

depth caused the rainbow to shift to smaller angles, as expected. Another

effect of this change was a reduction in the size of the covalent peak

relative to the ionic peak. Figure 6 shows the effect of changes in

the potential parameters upon the ion-pair distributions. The modification

that gave a reasonable fit to the ionic rainbow angle corresponds to an

Ar - I "well-depth" that is --0.3 eV shallower than that of K + 2

(at the same I-I internuclear separation).

For comparison, there are good ab initio calculations for the

diatomic potentials in Art, KrF, and the Ce halides.2 4 For each of

these systems the well depths of the various ion-pair states are

C-19
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between 0.3 eV and 0.7 eV shallower than those of the analogous alkali

halide molecule. With spin-orbit coupling included, the three ion-pair

states calculated for each rare-gas halide pair differ by less than

.0.2 eV in well depth and 0.1 .1 in Re from each other. If a similare

result obtained for the triatomic systems, our method of treating the

Ar + .2 system by a single (average) ion-pair surface intersecting a

single covalent surface would be a reasonable approximation to the

average scattering on the relevant surfaces and our resultant 0.5 eV

difference in Ar + - I- and K -1 well depths would appear to be reason-

able.

F. Ar + 12: Conclusions.

Our calculations clearly indicate that the ion-pair angular distri-

butions for reaction (1) depend quite sensitively on the shapes of the

interaction potentials, the surface coupling matrix elements, and the

amount of depletion from competing continuum coupling and excitation

transfer channels. With only crude model potentials and order-of-magnitude

estimates for the continuum coupling and excitation transfer effects, it

does not seem justified to vary parameters to achieve a fit to the data

that would be both model-dependent and non-unique. However, an estimate

of the probable causes for the differences from reaction (1) can be useful

in suggesting directions for further experimental or theoretical effort

on this system.
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The shift of the ionic rainbow for reaction (1), to lower ' values

than that for reaction (2), seems to be consistent with a shallower well in

the Ar+ + I interaction (see Figure 6). This change also lowers the
2

magnitude of the covalent peak relative to the ionic peak. In fact all

other modifications combined would only need to lower the covalent peak

by an additional 30-40% to achieve a good agreement with the experimental

data at E0 W 51 eV. 2 5

Combined with the change in the ionic potential described in Section

E, an increase of c1 by -407. over the K + 12 value (0.28 eV) would achieve

a reasonable match to the experimental data. However, such a change in V12

still seems rather large. As evidence for this assertion, we note that

26
Hubers et al. present a reduced matrix element formula that is slightly

modified from Eq. (7) and correlates with all alkali-halogen systems to

an accuracy of better than 10%. The modifi ation of the Ar + 12 matrix
26

element postulated here would deviate by 407. from the prediction based

on the alkali data and would then suggest some real differences of Ar

from alkali-like properties at distances of R f 5.7 1. It is difficult
c

to understand such a large effect at that distance caused by a vacancy

in the i6n core.

Alternatively, a continuum coupling width of -.4o r could be combined
0

with the shallower ionic potential to match the peak ra ios adequately.

This width is somewhat larger than the rough estimate (10-15 r) based
0

10
on the Miller-Morgner arguments, and the attenuated covalent peak would
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be located at larger 'r values than the data would allow. Yet our estimate

of r' is subject to considerable uncertainty and could be significantly

in error. Also, the covalent peak position and shape are sensitively

dependent on the potential functions used. This has been demonstrated
4

in K + Br2 by a comparison of calculations on diabatic and adiabatic

surfaces. Hence, continuum coupling (3) and excitation transfer (27)

reactions involving the ten valence 12 electrons could be responsible for

all or part of the remaining 30-407. depletion of the covalent peak.

Finally, we note that making the potentials more repulsive tends to

decrease the size of the covalent peak relative to the ionic peak. For

simplicity, we have constrained our calculations so that the repulsive

Born-Mayer terms are identical on the ionic and covalent surfaces.

Although this is a reasonable first approximation, one could decrease the

covalent peak by relaxing this constraint and allowing more repulsion

in the covalent potential. If such a difference were responsible for

the smaller covalent peak in (1) relative to (2), it would necessarily

imply differences between the two systems in the repulsive region.

This is easier to accept than large differences (40%) in the coupling

I'| matrix elements at the much larger distances associated with the

surface crossings.
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IV SUHK&OY

The small differences between the differential cross sections for

ion-pair formation in the Ar + 12 and K + 12 system can be explained,

in part, by a more repulsive wall in the ionic Ar + 12 surface relative

Co K + 12 " This yields a smaller ionic well depth (by -0.5 eV at re

of 12) and a correspondingly msaller ionic rainbow angle that is in agree-

*
ment with the data. If the covalent surfaces Ar + I 2 and K + 12 have

repulsive terms similar to those on their ionic counterparts, the calculated

ratio for the intensity of the covalent peak to the ionic peak in

reaction (1) is too large by a factor of -1.4.

This ratio can be improved by one or more of the following: a

relative increase in the repulsion on the Ar + I covalent surface; a
2

depletion of the covalent peak by competing Penning (3) and excitation

transfer (27) reactions; and an increase in the coupling matrix element

at the surface crossing between the ionic and covalent surfaces. The

third possibility seems least likely since it requires effects from the
!*

Ar core vacancy to be important at large R (-5.7 1).

Since the potential surfaces have only been estimated in a crude

way and since the continuum coupling width is only known'very approxi-

mately, we feel that no claim to a unique fit can be made. Continuum

coupling and excitation transfer processes may indeed cause observable,

but mall, depletions of the covalent peak in the ion-pair process (1).
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FIGURE CAPTIONS

1. Two possible paths a and b to ion pair production are schematically

indicated. The potential curves represent cuts of the Ar + I2 and

Ar + 12 surfaces at a fixed 12 separation.

2. Illustration of the coordinate system used to define the potential

functions.

3. Comparison of previous calculations and experimental data (Ref. 2)

on the system K + I with the present calculation, which uses
2

slightly different interaction potentials.

4. Calculation of the differential cross section for ion pair formation

in Ar + I2 compared with the data of Ref. 1. The effect of different

autoionization rates 7(R) in the covalent channel is illustrated.

r is the function estimated using the method discussed in Section

11-B-1, and given by Eq. (26). Successively larger values of r(R)
reduce the covalent peak by larger fractions.

5. Calculation of the differential cross section for ion pair formation
in Ar + 12 compared with the data of Ref. 1. The effect of different

coupling matrix elements V12 is illustrated. F(R) is set to zero in

all cas. V2 is the form given by Eq. (7) with c -0.28 eV and

c 2 0.65 A , the same parameters used in Ref. 1 for K + 1 . The

scaled values of V12 correspond to changing c1 to 0.7 eV and 1.4 eV.

6. Calculation of the differential cross section for ion pair formation*I
in Ar + 12 compared with the data of Ref. 1. The potential parameters,
defined in Eqns. (4) - (6), are A - 6.4 x 104 eV and B - 4.762 171 for

the original well, and A - 1.35 x 10 eV and B - 3.781 11 for the
shallower well.
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tPPENDIX D

MODEL FOR FAST, NON-ADIABATIC COLLISIONS BETWEEN
ALKALI ATOMS AND DIATOMIC MOLECULES

A. P. Hickman
Molecular Physics Laboratory

SRI International
Menlo Park, CA 94025

ABSTRACT

Equations for collisions involving two potential surfaces are

presented in the impact parameter approximation. In this approxi-

mation, a rectilinear classical trajectory is assumed for the

translational motion, leading to a time-dependent Schroedinger's

equation for the remaining degrees of freedom. Model potentials are

considered for collisions of alkali atoms with diatomic molecules

that lead to a particularly simple form of the final equations.

Using the Magnus approximation, these equations are solved for parameters

chosen to model the process Cs + 0 - Ca+ + 02', and total cross sections

for ion-pair formation are obtained as a function of energy. The results

* exhibit oscillations that correspond qualitatively to those seen in

, , recent measurements. In addition, the model predicts that the oscilla-

tions will become less pronounced as the initial vibrational level of

02 is increased.
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I • INTRODUCTION

In this paper we consider the process of ion-pair formation in

collisions between alkali atoms and diatomic molecules:

A + XY -A +XY (1)

An important feature of this process is that two electronic potential

surfaces are involved, the location of whose crossing depends both on

the vibrational and translational coordinates. Considerable work has

been done to analyze experimental data in terms of a perturbative,

1-3classical trajectory, surface-hopping model. The agreement is

satisfactory for many systems. However, there has been a tendency to

try to improve the basic model by introducing various ad hoc modifica-

tions. Here we will attempt to treat the process using a more

systematic theory.

Our approach is based on the semiclassical impact parameter

approximation. We choose a model form for the two potential surfaces

that is consistent with previous work,5,6 and also leads to a particularly

4i simple form of the final equations of motion. We assume that the

translational motion is a straight line trajectory with constant velocity,

and then focus on the quantum mechanical evolution of the remaining

degrees of freedom under the resulting time-dependent Hamiltonian. An

* approximate, unitary S matrix is found using the Magnus approximation.7
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In Section 11 we present the equations of motion in the impact

parameter approimacion for collisions involving two potential surfaces

that are functions of vibrational and translational coordinates. A

matrix notion is used that highlights the manner in which the second.

potential surface affects the motion. It is shown how rotational

degrees of freedom may be treated using the sudden approximation. In

Section III results are obtained for potential surfaces chosen to model

the specific system

Cs + 02 - Cs + . (2)

Total cross sections for ion-pair formation as a function of energy

are calculated. Because of the model nature of the potential surface,

and the perturbation solution of the equations of motion, the results

are not expected to be quantitative. However, the results are in

8qualitative agreement with recent experiments. Concluding remarks

are given in Section IV.

D
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11. THEORY

A. General Equations

We first develop the equations of the impact parameter approximation

for the case of two electronic potential surfaces that depend on a

translational coordinate R and a vibrational coordinate r. In the next

section we shall derive the form taken by these equations for our

particular model potential, and show how the rotational motion may be

included using the sudden approximation.

Let us take the matrix elements of the total Hamiltonian of the

system in a basis of two (diabetic) electronic functions. We will

assume that the resulting operator has the following form:

H 0(r) + V0 (R) 0 00(Rr) W01 (R,r)
- (T +T)1+) + (3)

V(r) LWo+(R, r) W 1 (Rr).

Note that we have isolated the separable part of the diagonal potential

matrix elements. The translational and vibrational coordinates are R

and r, respectively. We now assume that the translational motion is given

by

1(t) - (4)

where b and v are the impact parameter and relative velocity, respectively.

D-4
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We can now write the following time-dependent Hamiltonian for the

remaining degrees of freedom:

T r+v0 r)+wot)0 1 00 (Rt,) W01 1Rt)r
0 T Tr + V I(r) +.u '.(t) .W1 (R(t),r) W1 (R(t).r).

where

(t) - V. (R(t)) i - o,1 (6)

Let us assume that the eigenfunctions 4 and eigenvalues c of the

target Hamiltonians are known:

i  i
[+v (r)] XM i - 0,l (7)

Then the time-dependent Schroedinger's equations resulting from the

diagonal terms in the first set of brackets in (5) may be solved exactly.

That is,

(T +v (r)+ (t)) (rt) (rt) i
r i i ~t

has the exact solution

(r,t) - 4 (r) exp -(t£ d' = Ol (9)

L~ 0
The lower limit of the integral corresponds to an arbitrary phase factor

and is chosen for later convenience to be zero.
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We now wish to solve

H *total (r~t IN j at total (r,t) (10)

in terms of the following two component expansion:

0 O(r t)1 0
~total (t) N [6 NJ[

(r t)I (t) + E- X (t) tt

Substituting (11) with (10) and taking matrix elements in the standard

way, we obtain the following set of equations:

&~a-, ~(t)

F(t) A~t)

& C)a (t)
N -iN (12)

A(t (t(t)t

11 1

Note that we have used a notion in which the set of ZN coupled

differential equations is represented in terms of blocks, where each

block is 4n N xN matrix. The blocks are given as follows:

'(t) a,4 r)W0 (P( )r4 % r- x (13)
~00

~ m/ (r)Iw (a(t),r)If (r) 't.. )*Lb
(t) )> exp if -1 (14)

I,0



0x(t) ,,(r)Wl o R(t),r)lI(r) exp C + )-C 1-W (to)dt 1 (15)

0

tt
A# is the Hermiian conjugate of A:

A() 0 i((r)JWoia(t),r) (r), exp -i ef[ + o (t' )- -Z. 1 ()] dt', (16)

0

There will be 2N solution vectors, corresponding to the system beginning

at t - in each of the possible states 4N and

X - l...,N. If we solve Eq. (12) subject to the initial condition that

the solution matrix is the unit matrix at t + -- , then the value of the

solution at t-++- can be used to find the probability that the system

is in each possible final state after the collision. Each element of

the solution matrix at t - + is, within a phase factor, equal to the

corresponding element of the S matrix. This phase factor will be

discussed later.

B. Application to a Model System

1. Isotropic Potentials

4! In this section we will consider the form of Eq. (12) for a

particular set of potentials chosen to model collisions of alkali atoms

with diatomic molecules. Such systems are characterized by surface

crossings at fairly large values of R (06a0 ), so that near the crossings

fairly simple analytic approximations may be appropriate. We will use

analytic potentials similar to those already discussed in previous work:

D-7
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V0 (R) - 0 (17)

V (R) a (18)

W0 (R)-W 11(R) 0 (19)

W0 1 (R) - c 1 exp(c 2 a) (20)

v (r) A, exp [ -20,(r - r) 1 -2 expf-0 (r - r,)] (21)

These analytic functions model the behavior of the surface at

large values of R. The covalent surface is approximately constant, the

ionic surface is couloubic, and their asymptotic separation is AE. Such

potentials are expected to be adequate as long as the major part of the

cross section comes from trajectories with large impact parameters. It

should be noted that one could add the same repulsive term to V0 and V1

without affecting the transition probabilities, since the formulas to be

presented here depend only on the difference potential. This modification

would allow V and V to be more realistic at small R.
0 1

Equations (12)-(21) lead to the following simplifications in Eq. (12).

First, the diagonal blocks F and G vanish entirely because of Eq. (19).

A! These are the terms that lead to vibrationally inelastic scattering on a

.4 [ !single surface. Second, the matrix elements of W0 1 (R(t),r) reduce to a

function of t times the Franck-Condon factor

D-8
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because, according to Eq. (20), W01 is independent of r. Finally, the

integral inside the exponential can be done analytically. The final

form of the equations is thus

1t 1(t

o - A(t)

P (t) - ,(t) (23)

A(r) 0

where

A (t) - C 0(t) exp (if(t)} (24)

W 0 1 (t) - c1  exp{-c2 [b2 + (v)2]} 125)

f(t) E+ CI - C0 I lni)(26)

In many applications it will probably be necessary to solve Eq. (23)

numerically. However, in the present paper we will resort to an

approximation that involves considerably less computation. We use the

-k Magnus approximation, which involves setting the solution U at t +

to the exponential of a matrix. The result is

U -exp -i T(27)
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where U is a 2N x2N matrix. The matrix Q and its transpose QT are defined by

QU

f (28)

2Ch w ' 0 1 (t) cos[f(t)] dt

Because of the form of Eq. (27), unitarity is preserved. In the limit of

weak coupling, one may expand the exponential of Eq. (27) and recover the

standard result of first order time dependent perturbation theory. Note

also that integral in Eq. (28) could be evaluated using the stationary

phase approximation. The integrand is rapidly oscillating except near the

time corresponding to the surface crossing, so that the formalism reflects

the expected semiclassical result. In the present work, however, the

integrals will be evaluated by numerical quadrature.

We will denote the elements of U by U1 h (b), where 0 S i,j < 1

and I < %,1& t N. The superscripts denote the NxN blocks, the subscripts

the elements within each block. In this paper, we are primarily interested

in U.10 (b), the block of transition amplitudes between an initial covalent

channel and a final ionic shannel. For this case, the total cross section

from an initial vibrational state 4 to a final state X is given by

-2r~ l1 0  2 (9
a~ ~ 2 1 ju(b)Ib db (9

0

D-10
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We may also define a cross section sumed over final states:

N
- (30)

We now briefly discuss the determination of the S matrix from the

matrix U. Recall that the squared magnitude of each element of U gives

the probability of the corresponding state-to-state transition. That is,

each element of U must be multiplied by some phase factor in order to

obtain S. This phase factor is not necessary for the present applications

[Eqs. (29) and (30)], but it would be needed for a differential cross

section. We adopt the procedure9 of multiplying elements of U by phase

factors depending on 10 and T, which are the single channel phase shifts

obtained for the potentials V0 (R) and V I(R) respectively. (Note that

is the phase shift in addition to the standard coulomb phase shift].

The result may be summarized by writing

S - A U A (31)

where A is a 2Nx2N matrix given by

0~ - (32)

This formal prescription amounts to multiplying each element of the ij

block of U by expiC1+ ] frij-0.

D-11
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2. Anisotropic Potentials

To include rotational degrees of freedom in the model it is necessary

to include the anisotropy of the interaction potential. We generalize the

potentials in the following way, according to the coordinates shown in

Figure 1.

V (R,y) - V(R ) + V(R2) (33)0 1 2
05 0.5 (4

V (R,y) - V(R,v) + U - - . (34)

-V(Ry)+AE -a P (cos y) +... (35)
0 R Et3  2

"c R

WO0 (R,y) - c e 2 sin 2y (36)

The potential V is an effective two-body potential between the projectile

and each atom of the (homonuclear) diatomic target, which is assumed to

have an internuclear separation of 2a. As in the isotropic case, an

exponential, repulsive form of V(R) could be chosen. However, for the

particular form of Eqs. (33) and (34), the results to be presented here do

not depend on V since it does not appear in the difference potential.

5,6
This form of V0 and V has been used previously. The angular dependence

of W01 is chosen to be the same used by Kleyn et al.8 for Cs + 02, and has
• I 1 0nodes at the angles required by symmetry.

We now obtain rotationally-averaged cross sections using the Infinite-

j Order-Sudden (OS) approximation, 1',2 in which the cross section averaged

D-12
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over initial rotational states and summed over final states is obtained by

averaging the cross sections obtained in a set of calculations in which y

is regarded as a parameter. In other words, the rotationally averaged

cross section a from an initial vibrational state to a final vibrational

state X is given by

T f (y) sin ydy (37)

0

where a (y) is the cross section obtained for "frozen" Y. When y is

fixed it is easy to calculate the cross sections for ion pair formation,

using the methods of the preceeding section, for the form of V0 and V0 1

given in Eqs. (33) and (34). The result for U(Y) is given by an equation

of the same form as Eq. (27), with

Q () -2C, sin2y f wo1 (t) coslf (t) dt (38)

0
where2

w e ef (t) f(t) a 2 
.

c s ) VN'v (39)

vb
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III. RESULTS AND DISCUSSION

The formalism developed in the preceeding section has been applied

with parameters chosen to model the reaction

+ -
Cs + 0 2 - Cs + 0 2 (40)

Initially we used an interaction potential without anisotropy. In a

second calculation, however, anisotropy is included, and rotationally

averaged cross sections are obtained using the IOS approximation. For

both of the calculations we included 12 vibrational states of 0 and 12
2

of 0 This number was sufficient for convergence. The energy levels
2'

0 and ( and overlap integrals C were calculated numerically using

the Morse potentials for 0 and 0 defined by Eq. (21) and Table 1.
2 2

Other parameters for the potentials are also listed in Table 1.

The results of the first calculation are shown in Figure 2. Total

cross sections for ion-pair formation are shown as a function of energy.

The cross sections are summed over transitions from the indicated initial

vibrational state to all final vibrational states. The most interesting

feature is the pronounced oscillations. These have been previously

interpreted in terms of a classical trajectory-hoppin$ model, which

is briefly summarized here. The basic idea is that the crossing point

(or seam) of the covalent and ionic potential surfaces depends on the

D-14



vibrational coordinate. On the inward part of the trajectory, if the 02

is in the v-0 state, the vibrational coordinate is localized near its

equilibrium value, and the crossing occurs at R--7.2 a0. If a crossing

to the ionic surface occurs, however, 02 will be formed, and the

vibrational coordinate will start to expand, since the equilibrium

separation of 02 is larger than that of 02. Depending on the relative

translational velocity, the 0 may undergo a fraction of a vibration or
2

several vibrations before the crossing seam is reached a second time.

If the 02 is fully expanded at the second crossing, this crossing will

occur at a larger value of R, and the matrix element for recrossing to

the covalent surface will be much smaller, because of the exponential
dependence of W (R). In other words, if the 02 undergoes a half-integral

number of vibrations between the surface crossings, the cross section for

ion-pair formation will be enhanced.

This classical model has successfully explained the oscillations

observed in the experimental data of Kleyn at al. 8  It is worth noting,

13however, that except for a few exceptions, the previous calculations

have assumed that the 02 begins at rest in the bottom of its potential42-t-

well. Our present calculations show that the oscillations persist in a

model that treats the diatomic target quantum mechanically. We are also

able to examine the effect of changing the initial vibrational state of

0 It is seen that the oscillations tend to become less pronounced as

D-15
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v. is increased. A possible explanation for this effect is that as v

increases, the spatial extent of the 02 vibration increases, and it

becomes more difficult to localize the first crossing. The oscillations

depend on the first and second crossings occurring at very different

values of R.

In Figure 3, we show the results of calculations in which an

anisotropic term of the potential is treated using the IOS approxima-

tion. Compared to Figure 2, it is seen that the anisotropy causes

the oscillations to be less pronounced, but that the same trends persist.

Figure 4 compares the theoretical results for vi - 0 with the data of
i6

Kleyn et al. The trajectory hopping calculation of Kleyn et al. 6 is

also shown. All theoretical cross sections have been multiplied by a

statistical factor of 1/3. Qualitative agreement between experiment

and the present theory is obtained. It is likely that the position of

the maximum in the theory could be brought into closer agreement with

experiment by adjusting the parameters c1 and c2 of the coupling. We

6have simply taken the values obtained by Kleyn et al. by fitting their

classical calculations to the data. (If the data of Kleyn et al.

presented in Figure 4 are scaled by a constant factor, the agreement

'y with the classical calculation is reasonable. This procedure is justi-

fied because the experimental cross sections are relative.)
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A possible refinement to the theory, which would improve the

threshold behavior, would be to include a factor (E /E ) in the cross

section formulas. An empirical correction of this form has sometimes

been used14 to insure that the cross section goes to zero at threshold.

For energies near threshold, the assumption of a straight-line, constant

velocity trajectory is not valid. We have not included this factor in

the present calculations. For the cross sections at the lowest energies

presented in Figures 2, 3, and 4, the correction would be on the order

of 10%.

It is interesting to consider what might cause the difference

between the surface-hopping calculation and the present model. Both

use essentially the same potentials, yet the difference at some energies

is as much as a factor of two. The discrepancy may be related to the

following points. First, the rotation of the target is handled

differently in the two models. In the present work, introducing the

I0S approximation causes the location of the broad peak in the cross

section to shift about 40% (cf. Figures 2 and 3). This significant

*change suggests the cross sections may be sensitive to the treatment of

f fthe molecular anisotropy. Second, the Magnus approximation may not

provide a sufficiently accurate solution to Eq. (23). Finally, the

Landau-Zener formula used in the classical model often underestimates

15
transition probabilities at high energies. Further work is necessary

before firm conclusions can be drawn.

D-17



IV. CONCLUDLIG REMARKS

We have presented the equations of the semiclassical impact

parameter approximation for the case of collisions involving two

potential surfaces, and have examined in detail their application to

collisions of alkali atoms with diatomic molecules. Our results for

the specific system Cs + 0 are encouraging and suggest that the method
2

may be of great value in fast collisions where successive curve crossings

are not well isolated.

The present application has depended heavily on rather specific

assumptions about the analytic form of the interaction potential. These

assumptions were useful in order to simplify the numerical work required

in the first application of the theory. However, a number of refinements

may be introduced in a manner that is still computationally feasible.

In particular, more general forms of the potentials V 0(R) and V I(R) may

easily be introduced. Including the non-separable terms, W00 (R,r) and

W11 (R,r) is somewhat more difficult. Fortunately, experimental evidence8

seems to suggest that these terms may not be too important for collisions

of alkali atoms and diatomic molecules.

Future work will focus on the applicability of the IOS to collisions

involving two potential surfaces, and on the application of more refined

numerical techniques for solving the equations of motion.
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Table 1: Potential parameters. All quantities are given in

atomic units.

A 0Morse Parameters for 0 0.1880

r os aaesfr0 2 .8

00Morse Parameters for 0 2 1.48

A Morse Parameters for 02 0.1503
12$r 1  Morse Parameters for 0 2 2.534

Morse Parameters for 02 L.090

2a Lnternuclear separation of 0 2 2.4

aE Asymptotic energy separation 0.126

cDefines coupling matrix element 0.35

Defines coupling matrix element 0.5
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Figure Captions

Figure 1. Diagram illustrating the coordinates used on the present

calculations.

Figure Z. Results of the model calculation of the cross section for

ion-pair formation in collisions of Cs + 0 . An isotropic potential

is used as defined in Eqs. (17)-(21) and Table 1. The cross sections

are summned over all (12) final vibrational states.

Figure 3. Results of the model calculation of the cross section for

ion-pair formation in collisions of Cs + 0 . The anisotropic potential

defined by Eqs. (33)-(36) is used, and the cross sections are summed

over all (12) final vibrational states.

Figure 4. Comparison of the present model with the experimental

results and calculations o Kleyn et al. The latter calculation was

fitted to the data; if the experimental cross sections, which are

relative, are scaled by a constant the agreement with that calcula-

tion is reasonable.
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